首页> 外文期刊>Optical and quantum electronics >Numerical analysis of temperature and stress fields in hybrid indium antimonide arrays detector with laser irradiation
【24h】

Numerical analysis of temperature and stress fields in hybrid indium antimonide arrays detector with laser irradiation

机译:激光辐照混合锑化铟阵列探测器温度和应力场的数值分析

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal-stress effects are the major cause of failure in infrared focal-plane arrays detector, during laser irradiation. Based on the established three-dimensional structural model of hybrid indium antimonide infrared focal-plane arrays, the temperature and stress fields of hybrid indium antimonide detectors irradiated by 1.064-mu m Gauss pulsed laser are studied, considering the temperature-dependent material parameters. The results indicate that the temperature increase and thermal stress effects are different, in each layer. Especially in indium antimonide chip, which is the uppermost layer of the indium antimonide detector that directly absorbs laser energy, the temperature shows not a smooth decrease as laser intensity from centre to outside, but a concentric-ringed ripple decrease with discontinuous high temperature extremum areas; which induces its own unique stress distributions: during the laser irradiation region, the thermal stress in areas above indium bumps is much lower than that in areas above underfill, but the stress distribution outside the laser irradiation region is exactly the opposite. The temperature and stress distribution in other materials are also different from that in indium antimonide chip. The main reason is that each material has different thermal properties, especially indium bump and underfill, which are alternative distribution in middle layers, have quite different thermal parameters. All these make the temperature and stress distribution in each layer having own characteristics. In addition, the change trend of the maximum temperature and stress in each layer in accordance with the laser pulse number are also studied. The maximum stress as well as temperature always occurs in the indium antimonide chip.
机译:在激光辐照期间,热应力效应是红外焦平面阵列检测器发生故障的主要原因。在建立的混合型锑化铟红外红外焦平面阵列的三维结构模型的基础上,研究了1.064μm高斯脉冲激光辐照混合型锑化铟探测器的温度场和应力场,并考虑了与温度有关的材料参数。结果表明,每一层中的温度升高和热应力效应是不同的。特别是在锑化铟探测器的最上层直接吸收激光能量的锑化铟芯片中,随着激光强度从中心到外部,温度不会平滑下降,但是随着高温极值区域的不连续,同心环纹波会降低;这会产生自己独特的应力分布:在激光照射区域中,铟凸块上方区域的热应力要比底部填充上方区域的热应力低得多,但激光照射区域外部的应力分布却恰好相反。其他材料中的温度和应力分布也与锑化铟芯片中的温度和应力分布不同。主要原因是每种材料具有不同的热性能,尤其是铟凸块和底部填充材料(它们是中间层的替代分布)具有非常不同的热参数。所有这些使每一层中的温度和应力分布具有自己的特性。另外,还研究了各层中最高温度和应力随激光脉冲数的变化趋势。最大应力和温度总是发生在锑化铟芯片中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号