...
首页> 外文期刊>Optical and quantum electronics >Numerical analysis of temperature and stress fields in hybrid indium antimonide arrays detector with laser irradiation
【24h】

Numerical analysis of temperature and stress fields in hybrid indium antimonide arrays detector with laser irradiation

机译:激光照射杂交铟抗疟器阵列检测器温度和应力场的数值分析

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal-stress effects are the major cause of failure in infrared focal-plane arrays detector, during laser irradiation. Based on the established three-dimensional structural model of hybrid indium antimonide infrared focal-plane arrays, the temperature and stress fields of hybrid indium antimonide detectors irradiated by 1.064-mu m Gauss pulsed laser are studied, considering the temperature-dependent material parameters. The results indicate that the temperature increase and thermal stress effects are different, in each layer. Especially in indium antimonide chip, which is the uppermost layer of the indium antimonide detector that directly absorbs laser energy, the temperature shows not a smooth decrease as laser intensity from centre to outside, but a concentric-ringed ripple decrease with discontinuous high temperature extremum areas; which induces its own unique stress distributions: during the laser irradiation region, the thermal stress in areas above indium bumps is much lower than that in areas above underfill, but the stress distribution outside the laser irradiation region is exactly the opposite. The temperature and stress distribution in other materials are also different from that in indium antimonide chip. The main reason is that each material has different thermal properties, especially indium bump and underfill, which are alternative distribution in middle layers, have quite different thermal parameters. All these make the temperature and stress distribution in each layer having own characteristics. In addition, the change trend of the maximum temperature and stress in each layer in accordance with the laser pulse number are also studied. The maximum stress as well as temperature always occurs in the indium antimonide chip.
机译:激光照射期间,热应力效应是红外焦平面阵列检测器中的失效的主要原因。基于杂交铟锑苷的杂交铟型红外焦平面阵列的已建立的三维结构模型,研究了考虑到温度依赖性材料参数的1.064-MU M高斯脉冲激光器的杂交铟抗疟原虫探测器的温度和应力场。结果表明,在每层中,温度升高和热应力效应是不同的。特别是在抗衍生铟芯片中,这是直接吸收激光能量的铟抗唾液酸型检测器的最上层,温度显示出与来自中心到外部的激光强度的平滑降低,但与不连续的高温极值区域的同心振荡纹波减少;这诱导其自身独特的应力分布:在激光照射区域期间,铟凸块上方的区域的热应力远低于底部填充区域的区域,但激光照射区域外的应力分布正是相反的。其他材料中的温度和应激分布也与铟锑膜中的温度和应激分布不同。主要原因是每种材料具有不同的热性质,尤其是铟凸块和底部填充物,这是中间层中的替代分布,具有相当不同的热参数。所有这些都使得具有自身特性的每个层中的温度和应力分布。另外,还研究了根据激光脉冲数的每个层中最大温度和应力的变化趋势。最大应力以及温度始终发生在锑化铟芯片中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号