首页> 外文期刊>Numerical Heat Transfer, Part B: Fundamentals >A Simple Finite-Volume Formulation of the Lattice Boltzmann Method for Laminar and Turbulent Flows
【24h】

A Simple Finite-Volume Formulation of the Lattice Boltzmann Method for Laminar and Turbulent Flows

机译:层流和湍流的格子玻尔兹曼方法的简单有限体积公式

获取原文
获取原文并翻译 | 示例

摘要

A finite-volume formulation commonly employed in the well-known SIMPLE family algorithms is used to discretize the lattice Boltzmann equations on a cell-centered, non-uniform grid. The convection terms are treated by a higher-order bounded scheme to ensure accuracy and stability of solutions, especially in the simulation of turbulent flows. The source terms are linearized by a conventional method, and the resulting algebraic equations are solved by a strongly implicit procedure. A method is also presented to link the lattice Boltzmann equations and the macroscopic turbulence modeling equations in the frame of the finite-volume formulation. The method is applied to two different laminar flows and a turbulent flow. The predicted solutions are compared with the experimental data, benchmark solutions, and solutions by the conventional finite-volume method. The results of these numerical experiments for laminar flows show that the present formulation of the lattice Boltzmann method is slightly more diffusive than the finite-volume method when the same numerical grid and convection scheme are used. For a turbulent flow, the finite-volume lattice Boltzmann method slightly underpredicts the reattachment length in a separated flow. In general, the finite-volume lattice Boltzmann method is as accurate as the conventional finite-volume method in predicting the mean velocity and the pressure at the wall. These observations show that the present method is stable and accurate enough to be used in practical simulations of laminar and turbulent flows.View full textDownload full textRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10407790.2010.511965
机译:在众所周知的SIMPLE族算法中常用的有限体积公式用于离散以单元为中心的非均匀网格上的格子Boltzmann方程。对流项通过高阶有界方案进行处理,以确保解的准确性和稳定性,尤其是在湍流模拟中。通过常规方法将源项线性化,并通过强隐式过程求解所得代数方程。还提出了一种在有限体积公式框架内链接晶格玻尔兹曼方程和宏观湍流建模方程的方法。该方法适用于两种不同的层流和湍流。将预测的解与实验数据,基准解和通过常规有限体积法得出的解进行比较。这些用于层流的数值实验的结果表明,当使用相同的数值网格和对流方案时,格子玻尔兹曼方法的当前公式比有限体积方法的扩散性稍大。对于湍流,有限体积格子Boltzmann方法会稍微低估分离流中的重新附着长度。通常,有限体积晶格玻尔兹曼方法在预测壁的平均速度和压力方面与传统的有限体积方法一样准确。这些观察结果表明,本方法稳定,准确,足以用于层流和湍流的实际模拟中。查看全文下载全文,technorati,可口,linkedin,facebook,stumbleupon,digg,google,更多”,发布号:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10407790.2010.511965

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号