首页> 外文期刊>Computers & mathematics with applications >A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, Part I: Numerical framework and its application to laminar flow simulation
【24h】

A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, Part I: Numerical framework and its application to laminar flow simulation

机译:一种简化的有限体积格子玻尔兹曼方法,用于模拟从层流到湍流的流动,第一部分:数值框架及其在层流模拟中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an unstructured grid based finite volume lattice Boltzmann method (FVLBM) that can be used for the simulation of incompressible laminar flows is presented and studied in detail. This method is derived from a simple modification of the cell-vertex unstructured grid based FVLBM proposed by Stiebler et al. (2006). Compared with other complex flux reconstruction methods, the present scheme has a low computational cost and can also achieve second-order spatial accuracy. Furthermore, depending on the use of the different temporal discretization schemes, the temporal accuracy can be adjusted for both steady and unsteady flows. Besides, some comparisons of the computational cost and accuracy with another FVLBM scheme are also presented. Meanwhile, different boundary conditions are illustrated that are easy to implement on complex geometries. To validate the present method, four cases are carried out, including a Couette flow driven by one plate for an accuracy test, flow in a square cavity, flow around a single circular cylinder and a more complex flow around double circular cylinders. Numerical experiments show that the present scheme can simulate steady and unsteady flows at relatively high Reynolds number with relatively few grid cells, thus demonstrating the good capability of the present method. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文提出并详细研究了可用于不可压缩层流模拟的基于非结构网格的有限体积格子玻尔兹曼方法(FVLBM)。此方法源自Stiebler等人提出的基于单元顶点非结构化网格的FVLBM的简单修改。 (2006)。与其他复杂的通量重建方法相比,该方案具有较低的计算成本,并且还可以实现二阶空间精度。此外,根据不同时间离散方案的使用,可以为稳定流和非稳定流调整时间精度。此外,还提出了一些计算成本和准确性与另一种FVLBM方案的比较。同时,说明了易于在复杂几何图形上实现的不同边界条件。为了验证本方法,进行了四种情况,包括由一块板驱动的Couette流进行准确性测试,方腔内的流,围绕单个圆柱的流和围绕双圆柱的更复杂的流。数值实验表明,该方案能够以较少的网格单元模拟较高雷诺数下的稳态和非稳态流,从而证明了本方法的良好性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号