首页> 外文期刊>Numerical Heat Transfer, Part A: Applications >Compact Thermal Model for the Transient Temperature Prediction of a Water-Cooled Microchip Module in Low Carbon Emission Computing
【24h】

Compact Thermal Model for the Transient Temperature Prediction of a Water-Cooled Microchip Module in Low Carbon Emission Computing

机译:低碳排放计算中用于水冷微芯片模块瞬态温度预测的紧凑型热模型

获取原文
获取原文并翻译 | 示例

摘要

This article presents a compact computational model for the rapid determination of the junction temperature of a chip cooled with a heat sink, exploring the concept of hot water cooled electronics as a strategy to reduce the carbon footprint of data centers. The model aims at rapid simulations of variations of the chip, as well as the heat sink outlet water temperatures during transient heat loads. The model is validated by experimental tests with a water-cooled manifold microchannel (MMC) heat sink, which is designed to cool the processors of state-of-the-art servers. The chip temperature is determined subject to periodic heat loads as large as 100Â W with frequencies in the range from 1 to 10Â Hz. The results show that to calculate 1Â s of real temperature variation requires less than 20Â s of computational time on a Quad-Core AMD Opteron 2350, 2Â GHz desktop PC with 4Â GB RAM. The thermal response of the heat sink to real-time power traces with durations up to 200Â s is modeled for different flow rates. The simulations indicate that application of a flow-control feedback loop could achieve more than 50% reduction in water flow rate, without compromising the maximal chip temperatures.View full textDownload full textRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10407782.2011.578014
机译:本文提出了一种紧凑的计算模型,用于快速确定通过散热器冷却的芯片的结温,探讨了热水冷却电子器件的概念,以此作为减少数据中心碳足迹的策略。该模型旨在快速模拟芯片变化以及瞬态热负荷期间的散热器出口水温。该模型通过水冷歧管微通道(MMC)散热器的实验测试得到验证,该散热器设计用于冷却最新服务器的处理器。芯片温度是根据周期性热负荷确定的,周期性热负荷高达100 W,频率范围为1到10 Hz。结果表明,在具有4 GB RAM的四核AMD Opteron 2350、2 GHz台式PC上,计算1 s的实际温度变化所需的计算时间少于20 s。散热器对持续时间高达200 s的实时功率跟踪的热响应是针对不同的流量建模的。仿真表明,应用流量控制反馈回路可以在不影响最大芯片温度的情况下将水流量降低50%以上。查看全文下载全文相关的var addthis_config = {ui_cobrand:“ Taylor&Francis Online”,services_compact ::“ citeulike,netvibes,twitter,technorati,美味,linkedin,facebook,stumbleupon,digg,google,更多”,pubid:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10407782.2011.578014

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号