首页> 外文期刊>Numerical Functional Analysis and Optimization >Nonuniform FDM for Poisson-Type Equations on a Disk with Singular Solutions
【24h】

Nonuniform FDM for Poisson-Type Equations on a Disk with Singular Solutions

机译:具有奇异解的磁盘上泊松型方程的非均匀FDM

获取原文
获取原文并翻译 | 示例

摘要

We are concerned with the Dirichlet boundary value problem of Poisson-type equations on a disk. Matsunaga and Yamamoto [88. N. Matsunaga and T. Yamamoto ( 1999 ). Convergence of Swartztrauber-Sweet's approximation for the Poisson-type equation on a disk . Numer. Funct. Anal. Optimz. 20 : 917 - 928 . [Taylor & Francis Online], [Web of Science ®]View all references] proved that if the exact solution u is very smooth over the closure of the disk, then the approximate solution by the Swartztrauber-Sweet scheme with uniform partition is second order accurate. In this article, it is assumed that the exact solution performs singular properties such that its derivatives go to infinity at the boundary of the disk. We use a stretching polynomial-like function with a parameter to construct a local grid refinement and consider the Swartztrauber-Sweet scheme over the non-uniform partition. The effects of the parameter are analyzed completely by carrying out convergence analysis and numerical results show that there exists an optimal value for the parameter to have a best approximated solution.
机译:我们关注磁盘上泊松型方程的Dirichlet边值问题。松永和山本[88。 N. Matsunaga和T. Yamamoto(1999)。盘上泊松型方程的Swartztrauber-Sweet逼近的收敛性。 Numer。功能肛门Optimz。 20:917-928。 [Taylor&Francis Online],[Web of Science®]查看所有参考文献证明,如果精确解u在磁盘关闭过程中非常平滑,则采用均匀分配的Swartztrauber-Sweet方案的近似解为二阶准确。在本文中,假定精确解具有奇异性质,以便其导数在磁盘边界处变为无穷大。我们使用带有参数的类似拉伸多项式的函数来构造局部网格,并考虑非均匀分区上的Swartztrauber-Sweet方案。通过进行收敛性分析,对参数的影响进行了全面分析,数值结果表明,存在一个最优值,可以得到最佳的近似解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号