首页> 外文期刊>Numerical Algorithms >Explicit jump immersed interface method for virtual material design of the effective elastic moduli of composite materials
【24h】

Explicit jump immersed interface method for virtual material design of the effective elastic moduli of composite materials

机译:复合材料有效弹性模量虚拟材料设计的显式跳跃沉浸界面方法

获取原文
获取原文并翻译 | 示例

摘要

Virtual material design is the microscopic variation of materials in the computer, followed by the numerical evaluation of the effect of this variation on the material’s macroscopic properties. The goal of this procedure is an in some sense improved material. Here, we give examples regarding the dependence of the effective elastic moduli of a composite material on the geometry of the shape of an inclusion. A new approach on how to solve such interface problems avoids mesh generation and gives second order accurate results even in the vicinity of the interface. The Explicit Jump Immersed Interface Method is a finite difference method for elliptic partial differential equations that works on an equidistant Cartesian grid in spite of non-grid aligned discontinuities in equation parameters and solution. Near discontinuities, the standard finite difference approximations are modified by adding correction terms that involve jumps in the function and its derivatives. This work derives the correction terms for two dimensional linear elasticity with piecewise constant coefficients, i.e. for composite materials. It demonstrates numerically convergence and approximation properties of the method.
机译:虚拟材料设计是计算机中材料的微观变化,然后对该变化对材料的宏观性能的影响进行数值评估。该程序的目标是在某种意义上改进材料。在这里,我们给出了有关复合材料的有效弹性模量对夹杂物形状的几何形状的依赖性的示例。有关如何解决此类界面问题的新方法可避免生成网格,即使在界面附近也能获得二阶准确结果。显式跳跃浸入式界面方法是椭圆偏微分方程的一种有限差分方法,尽管方程参数和解中没有网格对齐的不连续性,该方程仍可在等距的笛卡尔网格上运行。在不连续点附近,通过添加涉及函数及其导数跳跃的校正项来修改标准有限差分近似。这项工作得出具有分段常数系数的二维线性弹性的校正项,即复合材料的校正项。它证明了该方法的数值收敛性和逼近性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号