首页> 外文期刊>Numerical Algorithms >Simple geometric constructions of quadratically and cubically convergent iterative functions to solve nonlinear equations
【24h】

Simple geometric constructions of quadratically and cubically convergent iterative functions to solve nonlinear equations

机译:二次和三次收敛迭代函数的简单几何构造,用于求解非线性方程

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we derive one-parameter families of Newton, Halley, Chebyshev, Chebyshev-Halley type methods, super-Halley, C-methods, osculating circle and ellipse methods respectively for finding simple zeros of nonlinear equations, permitting f ′ (x) = 0 at some points in the vicinity of the required root. Halley, Chebyshev, super-Halley methods and, as an exceptional case, Newton method are seen as the special cases of the family. All the methods of the family and various others are cubically convergent to simple roots except Newton’s or a family of Newton’s method.
机译:在本文中,我们推导了牛顿,哈雷,切比雪夫,切比雪夫-哈利类型方法,超哈利,C方法,闭合圆法和椭圆法的一参数族,以分别找到非线性方程的简单零点,并允许f'(x )= 0,位于所需根的附近。哈雷(Halley),切比雪夫(Chebyshev),超级哈利(super-Halley)方法以及特例牛顿(Newton)方法被视为家庭的特例。除牛顿方法或牛顿方法系列外,该族的所有方法以及其他方法都立方地收敛到简单的根。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号