首页> 外文期刊>Numerical Algorithms >Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations
【24h】

Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations

机译:基于两网格离散化的暂态Stokes方程的局部和并行有限元算法

获取原文
获取原文并翻译 | 示例

摘要

Based on two-grid discretizations, some local and parallel finite element algorithms for the d-dimensional (d = 2,3) transient Stokes equations are proposed and analyzed. Both semi- and fully discrete schemes are considered. With backward Euler scheme for the temporal discretization, the basic idea of the fully discrete finite element algorithms is to approximate the generalized Stokes equations using a coarse grid on the entire domain, then correct the resulted residue using a finer grid on overlapped subdomains by some local and parallel procedures at each time step. By the technical tool of local a priori estimate for the fully discrete finite element solution, errors of the corresponding solutions from these algorithms are estimated. Some numerical results are also given which show that the algorithms are highly efficient.
机译:基于两网格离散化,提出并分析了d维(d = 2,3)瞬态斯托克斯方程的局部和并行有限元算法。半离散方案和完全离散方案均被考虑。对于后向离散化,采用后向Euler方案,完全离散有限元算法的基本思想是在整个域上使用粗糙网格逼近广义的Stokes方程,然后在局部子域上使用重叠子域上的精细网格校正所得残差并在每个时间步骤进行并行操作。通过对完全离散有限元解进行局部先验估计的技术工具,可以从这些算法中估计出相应解的误差。还给出了一些数值结果,表明该算法是高效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号