首页> 外文期刊>Numerical Algorithms >Quadratic spline collocation for one-dimensional linear parabolic partial differential equations
【24h】

Quadratic spline collocation for one-dimensional linear parabolic partial differential equations

机译:一维线性抛物型偏微分方程的二次样条搭配

获取原文
获取原文并翻译 | 示例

摘要

New methods for solving general linear parabolic partial differential equations (PDEs) in one space dimension are developed. The methods combine quadratic-spline collocation for the space discretization and classical finite differences, such as Crank-Nicolson, for the time discretization. The main computational requirements of the most efficient method are the solution of one tridiagonal linear system at each time step, while the resulting errors at the gridpoints and midpoints of the space partition are fourth order. The stability and convergence properties of some of the new methods are analyzed for a model problem. Numerical results demonstrate the stability and accuracy of the methods. Adaptive mesh techniques are introduced in the space dimension, and the resulting method is applied to the American put option pricing problem, giving very competitive results.
机译:提出了在一个空间维度上求解一般线性抛物型偏微分方程(PDE)的新方法。这些方法结合了用于空间离散化的二次样条搭配和用于时间离散化的经典有限差分(例如Crank-Nicolson)。最有效方法的主要计算要求是在每个时间步上求解一个三对角线性系统,而在空间分区的网格点和中点处产生的误差为四阶。针对模型问题,分析了一些新方法的稳定性和收敛性。数值结果证明了该方法的稳定性和准确性。在空间维度上引入了自适应网格技术,并将所得方法应用于美国认沽期权定价问题,从而提供了非常具有竞争力的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号