首页> 外文期刊>Numerical Algorithms >The complex step approximation to the Fréchet derivative of a matrix function
【24h】

The complex step approximation to the Fréchet derivative of a matrix function

机译:矩阵函数的Fréchet导数的复步近似

获取原文
获取原文并翻译 | 示例

摘要

We show that the Fréchet derivative of a matrix function f at A in the direction E, where A and E are real matrices, can be approximated by Im f(A + ihE)/h for some suitably small h. This approximation, requiring a single function evaluation at a complex argument, generalizes the complex step approximation known in the scalar case. The approximation is proved to be of second order in h for analytic functions f and also for the matrix sign function. It is shown that it does not suffer the inherent cancellation that limits the accuracy of finite difference approximations in floating point arithmetic. However, cancellation does nevertheless vitiate the approximation when the underlying method for evaluating f employs complex arithmetic. The ease of implementation of the approximation, and its superiority over finite differences, make it attractive when specialized methods for evaluating the Fréchet derivative are not available, and in particular for condition number estimation when used in conjunction with a block 1-norm estimation algorithm. Keywords Fréchet derivative - Matrix function - Complex step approximation - Complex arithmetic - Finite difference - Matrix sign function - Condition number estimation - Block 1-norm estimator Mathematics Subject Classifications (2000) 15A60 - 65F30 The work of the second author was supported by a Royal Society-Wolfson Research Merit Award and by Engineering and Physical Sciences Research Council grant EP/D079403.
机译:我们表明,矩阵函数f在方向E上在A处的Fréchet导数(其中A和E是实矩阵)可以通过Im f(A + ihE)/ h近似地计算一些合适的h。这种近似要求在复数参数上进行单个函数求值,从而将标量情况下已知的复数步阶近似进行了概括。对于解析函数f以及矩阵正负号函数,逼近度在h中被证明是二阶的。结果表明,它没有遭受固有的抵消,该固有的抵消限制了浮点算术中有限差分近似的精度。但是,当用于评估f的基本方法采用复杂算术时,抵消仍会抵消近似值。逼近的易实现性及其优于有限差分的优越性使它在缺乏用于评估Fréchet导数的专用方法(尤其是与块1-范数估计算法结合使用时的条件数估计)的情况下具有吸引力。关键词Fréchet导数-矩阵函数-复杂步长逼近-复杂算术-有限差分-矩阵符号函数-条件数估计-块一范数估计器数学主题分类(2000)15A60-65F30第二作者的工作得到了Royal的支持社会-沃尔夫森研究优异奖,并由工程与物理科学研究委员会授予EP / D079403。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号