首页> 外文期刊>Nuclear Technology >Phenomenological Modeling Approach to Anisotropic Ablation in Molten Core-Concrete Interactions
【24h】

Phenomenological Modeling Approach to Anisotropic Ablation in Molten Core-Concrete Interactions

机译:熔融核-混凝土相互作用中各向异性消融的现象学建模方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This work proposes a model to explain concrete anisotropic ablation by corium during a molten core-concrete interaction (MCCI). As a result of recent MCCI prototypic material experiments, core-concrete interaction (CCI) tests, and VULCANO tests, one observes that concrete ablation behavior consistently depends on the concrete materials used in the experiments. Specifically, tests with limestone-common-sand (LCS) concrete yielded isotropic concrete ablation, i.e., equal axial and radial concrete erosion. This is in comparison to anisotropic ablation in tests with siliceous (SIL) concrete, where radial ablation was much larger than axial ablation. This was an unexpected result because prior results of many MCCI simulant experiments indicated that nearly isotropic ablation was expected in prototypic material experiments regardless of concrete type. A new phenomenological model is proposed in this work based on a hypothesis that unifies the result of both previous simulant and prototypic material experiments, i.e., heat transfer area enhancement and delayed gas release caused by the presence of unmelted solid aggregate material that enters the molten pool. This model offers a logical and phenomenological explanation concerning anisotropic ablation as well as the capability to simulate anisotropic ablation. This model is implemented into the CORQUENCH code as part of this work. Comparisons of these simulation results obtained with this new model to the CCI experiments for cases with SIL concrete and anisotropic ablation show better agreement with the test data than the existing model.
机译:这项工作提出了一个模型,用以解释在熔融核-混凝土相互作用(MCCI)过程中,通过混凝土进行的混凝土各向异性烧蚀。最近的MCCI原型材料实验,岩心-混凝土相互作用(CCI)测试和VULCANO测试的结果是,人们观察到混凝土的烧蚀行为始终取决于实验中使用的混凝土材料。具体地,用石灰石-普通砂(LCS)混凝土进行测试产生了各向同性的混凝土烧蚀,即,轴向和径向混凝土的侵蚀相等。这与硅质(SIL)混凝土的各向异性消融相比,径向消融比轴向消融大得多。这是一个出乎意料的结果,因为许多MCCI模拟实验的先前结果表明,无论材料类型如何,原型材料实验都有望实现近乎各向同性的烧蚀。在这项工作的基础上,提出了一个新的现象学模型,该假设统一了先前的模拟和原型材料实验的结果,即传热面积的增加和由于进入熔池的未熔融固体骨料的存在而导致的气体释放延迟。该模型提供了关于各向异性消融的逻辑和现象学解释,以及模拟各向异性消融的能力。作为该工作的一部分,该模型已实现到CORQUENCH代码中。使用该新模型将这些模拟结果与SIL混凝土和各向异性烧蚀的CCI实验进行的比较表明,与现有模型相比,该试验结果与测试数据具有更好的一致性。

著录项

  • 来源
    《Nuclear Technology》 |2016年第3期|511-523|共13页
  • 作者单位

    GE Hitachi Nuclear Energy, Core and Fuels Engineering, 3901 Castle Hayne Road, Wilmington, North Carolina 28402,University of Wisconsin-Madison, Nuclear Engineering and Engineering Physics, 1500 Engineering Drive, Madison, Wisconsin 53706;

    University of Wisconsin-Madison, Nuclear Engineering and Engineering Physics, 1500 Engineering Drive, Madison, Wisconsin 53706;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Core-concrete interaction; molten core; anisotropic ablation;

    机译:核心与具体的互动;熔融核各向异性烧蚀;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号