首页> 外文期刊>Nuclear Technology >Enhancing the One-Dimensional SFR Thermal Stratification Model via Advanced Inverse Uncertainty Quantification Methods
【24h】

Enhancing the One-Dimensional SFR Thermal Stratification Model via Advanced Inverse Uncertainty Quantification Methods

机译:通过先进的逆不确定性定量方法增强一维SFR热分层模型

获取原文
获取原文并翻译 | 示例
       

摘要

Thermal stratification (TS) is a thermal-fluid phenomenon that can introduce large uncertainties to nuclear reactor safety. The stratified layers caused by TS can lead to temperature oscillations in the reactor core. They can also result in damages to both the reactor vessel and in-vessel components due to the growth of thermal fatigue cracks. More importantly, TS can impede the establishment of natural circulation, which is widely used for passive cooling and ensures the inherent safety of numerous reactor designs. A fast-running one-dimensional (1-D) model was recently developed in our research group to predict the TS phenomenon in pool-type sodium-cooled fast reactors. The efficient 1-D model provided reasonable temperature predictions for the test conditions investigated, but nonnegligible discrepancies between the 1-D predictions and the experimental temperature measurements were observed. These discrepancies are attributed to the model uncertainties (also known as model bias or errors) in the 1-D model and the parameter uncertainties in the input parameters. In this study, we first recognized through a forward uncertainty analysis that the observed discrepancies between the computational predictions and the experimental temperature measurements could not be explained solely by input uncertainty propagation. We then performed an inverse uncertainty quantification (UQ) study to reduce the model uncertainties of the 1-D model using a modular Bayesian approach based on experimental data. Inverse UQ serves as a data assimilation process to simultaneously minimize the mismatches between the predictions and experimental measurements, while quantifying the associated parameter uncertainties. The solutions of the modular Bayesian approach were in the form of posterior probability density Junctions, which were explored by rigorous Markov Chain Monte Carlo sampling. Results showed that the quantified parameters obtained from the inverse UQ effectively improved the predictive capability of the 1-D TS model.
机译:热分层(TS)是一种热流体现象,可引入核反应堆安全性的大不确定性。由TS引起的分层层可以导致反应器芯中的温度振荡。由于热疲劳裂缝的生长,它们还可以导致反应器容器和容器组分的损坏。更重要的是,Ts可以妨碍建立自然循环,这广泛用于被动冷却,并确保众多反应堆设计的固有安全性。最近在我们的研究组中开发了一种快速运行的一维(1-D)模型,以预测池式钠冷却的快速反应器中的TS现象。高效的1-D模型提供了对研究的测试条件的合理温度预测,但是观察到1-D预测和实验温度测量之间的非资格差异。这些差异归因于1-D模型中的模型不确定性(也称为模型偏置或错误)和输入参数中的参数不确定性。在本研究中,我们首先通过前向不确定性分析认识到,无法通过输入不确定性传播来解释计算预测和实验温度测量之间观察到的差异。然后,我们进行了逆不确定性量化(UQ)研究,以利用基于实验数据的模块化贝叶斯方法来降低1-D模型的模型不确定性。反uq用作数据同化过程,以同时最小化预测和实验测量之间的不匹配,同时量化相关的参数不确定性。模块化贝叶斯方法的解决方案是后验概率密度交叉点的形式,由严格的马尔可夫链蒙特卡罗采样探索。结果表明,从反向UQ获得的量化参数有效地提高了1-D TS模型的预测能力。

著录项

  • 来源
    《Nuclear Technology》 |2021年第5期|692-710|共19页
  • 作者

    Cihang Lu; Zeyun Wu; Xu Wu;

  • 作者单位

    Virginia Commonwealth University Department of Mechanical and Nuclear Engineering Richmond Virginia 23219;

    Virginia Commonwealth University Department of Mechanical and Nuclear Engineering Richmond Virginia 23219;

    North Carolina State University Department of Nuclear Engineering Raleigh North Carolina 27695;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thermal stratification; sodium-cooled fast reactor; sensitivity analysis; inverse uncertainty quantification;

    机译:热分层;冷却的快速反应器;敏感性分析;反向不确定性量化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号