首页> 外文期刊>Nuclear science and engineering >A second-order finite volume discretization of the time-dependent transport equation on arbitrary quadrilaterals in R-Z geometry
【24h】

A second-order finite volume discretization of the time-dependent transport equation on arbitrary quadrilaterals in R-Z geometry

机译:R-Z几何中任意四边形上与时间有关的运输方程的二阶有限体积离散

获取原文
获取原文并翻译 | 示例

摘要

A second order, semi-implicit numerical method for solving the multigroup nonstationary transport equation and corresponding code is developed in two-dimensional R-Z geometry. Finite difference meshes are formed by arbitrary convex quadrangles. The conservative finite difference scheme is derived by the integro-interpolation method The balance equation is augmented by linear approximations. The proposed additional relationships provide the second order of approximation at any side-visible cases using a corresponding choice of the weights of scheme. The number of additional relationships in spatial variables, as well as their form, depends on how many visible sides are under consideration. The additional relationships in time and angle variables are diamond-difference-like approximations relating the edge values to the cell-centered values.An analytical test problem is used to demonstrate the second order of spatial approximation of the proposed method. To test the algorithm for solving the stationary transport equation, we compare the numerical results, obtained by the developed technique, with the results produced by one-dimensional (1-D) codes such as KINID (The Keldysh Institute ofApplied Mathematics, Russia) and ANISN (U. S.) by using spherical symmetrical 1-D problems. Special analytical benchmarks are developed to test the nonstationary technique. The tests have shown good agreement of the results.
机译:在二维R-Z几何中发展了求解多组非平稳输运方程和相应代码的二阶半隐式数值方法。有限差分网格由任意凸四边形形成。通过整数插值方法导出保守的有限差分方案。通过线性逼近扩充平衡方程。所提出的附加关系使用方案权重的相应选择,在任何侧面可见的情况下提供了近似的二阶。空间变量中其他关系的数量及其形式取决于正在考虑的可见边数。时间和角度变量的其他关系是将边缘值与像元中心值联系起来的菱形近似法。使用分析测试问题来证明该方法的空间近似二阶。为了测试求解平稳输运方程的算法,我们将通过发达技术获得的数值结果与一维(1-D)代码(例如KINID(俄罗斯的Keldysh应用数学研究所)和ANISN(US)通过使用球对称一维问题。开发了特殊的分析基准来测试非平稳技术。测试表明结果吻合良好。

著录项

  • 来源
    《Nuclear science and engineering》 |2004年第1期|p. 186-194|共9页
  • 作者

    Voronkov AV; Sychugova EP;

  • 作者单位

    Russian Acad Sci, MV Keldysh Appl Math Inst, Moscow 125047, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号