...
【24h】

Dot-array implantation for patterned doping of semiconductors

机译:点阵注入用于半导体的图案化掺杂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Novel ion beam processing for microelectronic applications has been performed by doping silicon with a focused ion beam tool. A Ga~+ ion beam with a energy between 10 and 50 keV was used for p-doping of Si. The ion beam could be focused to an effective beam diameter in the sub-micron range with the smallest focus own below 10 nm. In contrast to conventional implantation with a broad ion beam where the doped area is assigned by a hardmask the implantation was achieved by scanning a focused ion beam over the designated implantation area. With this approach not only the hardmask becomes obsolete because of the electronic beam guidance. Moreover, different doses may be implanted on the same wafer. An additional feature is the inhomogeneous implantation in a pixel-array, where the distance between exposed pixels can be deliberately varied. Even single spots can be independently doped with the focused gallium beam. Due to lateral scattering of ions in the semiconductor the circular implantation area is larger than the beam diameter. With a variation of the pixel spacing we could intentionally obtain either a overlap or a separation of implantation spots. With a four-point method we have investigated the conductivity of the dot-array implanted area. The conductivity of the p-doped region could be deliberately scaled by varying the pixel spacing, the implantation dose and the ion energy. The effective implantation diameter of a single pixel could be determined. This modified implantation approach was also used to fabricate functional p-channel MOSFET's. The Ga implantation with a focused ion beam was used for p-doping of source and drain regions of the transistor device. The utilization of this dot-array implantation with a FIB for semiconductor circuitry demonstrates the potential application of this approach. With the laterally inhomogeneous implantation dot-arrays of doped zones in the nanometer range could be fabricated.
机译:通过用聚焦离子束工具对硅进行掺杂,可以进行微电子应用的新型离子束处理。能量在10至50 keV之间的Ga +离子束用于Si的p掺杂。离子束可以聚焦到亚微米范围内的有效束直径,而最小聚焦在10 nm以下。与通过硬掩模分配掺杂区域的宽离子束的常规注入相反,通过在指定的注入区域上扫描聚焦的离子束来实现注入。通过这种方法,不仅硬掩模由于电子束引导而变得过时。而且,可以在同一晶片上注入不同剂量的物质。另一个特征是像素阵列中的不均匀注入,其中曝光像素之间的距离可以有意改变。即使是单个斑点也可以独立地聚焦镓光束。由于离子在半导体中的横向散射,圆形注入面积大于束直径。随着像素间距的变化,我们可以有意地获得注入点的重叠或分离。通过四点方法,我们研究了点阵注入区的电导率。可以通过改变像素间距,注入剂量和离子能量来故意缩放p掺杂区域的电导率。可以确定单个像素的有效注入直径。这种改进的注入方法还用于制造功能性p沟道MOSFET。具有聚焦离子束的Ga注入被用于晶体管器件的源极和漏极区域的p掺杂。这种用FIB进行点阵注入的半导体电路的使用证明了这种方法的潜在应用。利用横向不均匀的注入,可以制造纳米范围内的掺杂区的点阵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号