首页> 美国卫生研究院文献>Journal of the Royal Society Interface >The pathway to intelligent implants: osteoblast response to nano silicon-doped hydroxyapatite patterning
【2h】

The pathway to intelligent implants: osteoblast response to nano silicon-doped hydroxyapatite patterning

机译:智能植入物的途径:成骨细胞对纳米硅掺杂羟基磷灰石图案的反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bioactive hydroxyapatite (HA) with addition of silicon (Si) in the crystal structure (silicon-doped hydroxyapatite (SiHA)) has become a highly attractive alternative to conventional HA in bone replacement owing to the significant improvement in the in vivo bioactivity and osteoconductivity. Nanometre-scaled SiHA (nanoSiHA), which closely resembles the size of bone mineral, has been synthesized in this study. Thus, the silicon addition provides an extra chemical cue to stimulate and enhance bone formation for new generation coatings, and the next stage in metallic implantation design is to further improve cellular adhesion and proliferation by control of cell alignment. Topography has been found to provide a powerful set of signals for cells and form contact guidance. Using the recently developed novel technique of template-assisted electrohydrodynamic atomization (TAEA), patterns of pillars and tracks of various dimensions of nanoSiHA were achieved. Modifying the parameters of TAEA, the resolution of pattern structures was controlled, enabling the topography of a substrate to be modified accordingly. Spray time, flow rate and distance between the needle and substrate were varied to improve the pattern formation of pillars and tracks. The 15 min deposition time provided the most consistent patterned topography with a distance of 50 mm and flow rate of 4 µl min−1. A titanium substrate was patterned with pillars and tracks of varying widths, line lengths and distances under the optimized TAEA processing condition. A fast bone-like apatite formation rate was found on nanoSiHA after immersion in simulated body fluid, thus demonstrating its high in vitro bioactivity. Primary human osteoblast (HOB) cells responded to SiHA patterns by stretching of the filopodia between track and pillar, attaching to the apex of the pillar pattern and stretching between two. HOB cells responded to the track pattern by elongating along and between the track, and the length of HOB cells was proportional to the gaps between track patterns, but this relationship was not observed on the pillar patterns. The study has therefore provided an insight for future design of next generation implant surfaces to control and guide cellular responses, while TAEA patterning provides a controllable technique to provide topography to medical implants.
机译:由于体内生物活性和骨电导率的显着提高,在晶体结构中添加硅(硅掺杂的羟基磷灰石(SiHA))的生物活性羟基磷灰石(HA)已成为常规HA的高度有吸引力的替代品。在这项研究中已经合成了纳米级的SiHA(nanoSiHA),它与骨矿物质的大小非常相似。因此,硅的添加提供了额外的化学线索来刺激和增强新一代涂层的骨形成,并且金属植入设计的下一阶段是通过控制细胞排列进一步改善细胞粘附和增殖。已经发现地形可以为单元提供强大的信号集并形成接触引导。使用最近开发的模板辅助电动流体雾化(TAEA)的新技术,可以实现各种尺寸的nanoSiHA的柱和轨迹的图案。修改TAEA的参数,控制图案结构的分辨率,从而可以相应地修改基板的形貌。改变喷射时间,流速和针与基底之间的距离以改善柱和迹线的图案形成。 15分钟的沉积时间提供了最一致的图案形貌,距离为50 mm,流速为4 µl min -1 。在优化的TAEA处理条件下,用具有不同宽度,线长和距离的柱和迹线对钛基板进行构图。浸入模拟体液后,在nanoSiHA上发现了快速的骨样磷灰石形成速率,从而证明了其高的体外生物活性。人类原代成骨细胞(HOB)通过在轨迹和支柱之间伸展丝状伪足,附着在支柱图案的顶点并在两者之间伸展来对SiHA模式作出反应。 HOB单元通过沿轨道和在轨道之间延伸而对轨道模式作出响应,并且HOB单元的长度与轨道模式之间的间隙成比例,但是在柱形模式上未观察到这种关系。因此,该研究为下一代植入物表面的未来设计提供了见识,以控制和引导细胞反应,而TAEA图案化提供了可控制的技术,可为医用植入物提供形貌。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号