首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >XTEM investigation of recovery on electrical degradation of 4H-SiC Schottky barrier diode by swift heavy (209)~Bi ions irradiation
【24h】

XTEM investigation of recovery on electrical degradation of 4H-SiC Schottky barrier diode by swift heavy (209)~Bi ions irradiation

机译:快速(209)〜Bi离子辐照恢复4H-SiC肖特基势垒二极管电降解的XTEM研究

获取原文
获取原文并翻译 | 示例

摘要

The recovery of electrical degradation of 4H-SiC Schottky barrier diode (SBD) by swift heavy (209)~Bi ions irradiation has been revealed in previous work. In present work, the results of cross section transmission electron microscopy (XTEM), selected area electron diffraction patterns (SAED), energy dispersive X-ray spectroscopy (EDX)line scan investigations and energy EDX mapping micrographs of the Al/WO/WTi/ TiO_2/4H-SiC SBD before and after (209)~Bi ions irradiation are given to explain the mechanism of the recovery on electrical degradation. XTEM examinations show that the swift heavy ions (SHI) cause the crystal structure to be destroyed at metal-semiconductor (M-S) interface at fluence of 1 x 10~9 ions/cm~2, which can be recovered for a certain extent at fluence of 1 x 10~(10) ions/cm~2 due to the healing effect accumulation of intense energy deposition during SHI irradiation. Furthermore, the SHI induced recrystallization at M-S interfaces, which is in good agreement with our previous results.EDX line scans reveal that the varied information of Si atoms in the WO and WTi layers after irradiation, which can be attributed to the migration of the Si towards interface after the Si-C bond destroyed by SHI. The recovery of the ration between silicon and carbon atoms plays important role in the recovery of electrical degradation at interfaces between TiO_2 and 4H-SiC.
机译:在先前的工作中已经揭示了通过快速重(209)〜Bi离子辐照恢复4H-SiC肖特基势垒二极管(SBD)的电降解。在目前的工作中,Al / WO / WTi /的截面透射电子显微镜(XTEM),选定区域电子衍射图(SAED),能量色散X射线光谱(EDX)线扫描研究和能量EDX映射显微图的结果给出了(209)〜Bi离子辐照前后的TiO_2 / 4H-SiC SBD,解释了电降解的恢复机理。 XTEM检查表明,快速重离子(SHI)导致在1 x 10〜9离子/ cm〜2的注量下,金属-半导体(MS)界面处的晶体结构被破坏,通过注量可以在一定程度上被回收。由于在SHI辐照过程中强能量沉积的愈合效应积累,导致1 x 10〜(10)离子/ cm〜2的累积。此外,SHI诱导了MS界面的重结晶,这与我们以前的结果非常吻合。EDX线扫描显示,辐照后WO和WTi层中Si原子的变化信息可以归因于Si的迁移SHI破坏了Si-C键后向界面移动。硅和碳原子之间的配比的恢复在TiO_2和4H-SiC之间界面的电降解的恢复中起着重要作用。

著录项

  • 来源
  • 作者单位

    Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China;

    Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;

    Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China;

    Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China;

    Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China,Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China;

    Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;

    Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Silicon carbide Schottky barrier diode; Transmission electron; Microscopy; Metal-semiconductor interface; Swift heavy ion irradiation; Crystal recovery;

    机译:碳化硅肖特基势垒二极管;透射电子;显微镜;金属-半导体界面;快速重离子辐照;水晶恢复;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号