首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Optimized readout methods of silicon drift detectors for high-resolution X-ray spectroscopy
【24h】

Optimized readout methods of silicon drift detectors for high-resolution X-ray spectroscopy

机译:高分辨率X射线光谱学的硅漂移检测器的优化读出方法

获取原文
获取原文并翻译 | 示例

摘要

Silicon Drift Detectors with integrated FET transistor fabricated at Max-Planck-Institute in Munich in cooperation with PNSensor GmbH are widely used as X-ray sensors in many industrial and scientific applications. In the classical readout scheme, the integrated transistor on the SDD is operated in the source-follower configuration. The signal charge is removed continuously by the detector self-rest mechanism. The method gives very good results at counting rates up to 10 kcps. For higher count rates, the FWHM increases with the growing reset current and a slight shift of the energy peak is observed. The relative large signal rise time can be also a limitation for operation at very high count rates. Alternatively, the SDD can be operated in a Charge Sensitive Amplifier (CSA) configuration. The detector signal charge is integrated on a feedback capacitor across an inverting amplifier with the integrated FET as the input transistor. The signal rise time does not depend on the integrated transistor and can be made very short (e.g. 50 ns). In applications requiring very high counting rates and constant energy resolution, pulsed-reset operation of the SDD is desirable. The signal charge is removed by applying short reset pulses to a reset structure integrated on the detector anode. The combination of the CSA readout scheme and the pulsed-reset method allows the operation at the best energy resolution independent on the count rate. (c) 2006 Elsevier B.V. All rights reserved.
机译:与PNSensor GmbH合作在慕尼黑Max-Planck-Institute制造的带有集成FET晶体管的硅漂移检测器被广泛用作许多工业和科学应用中的X射线传感器。在经典的读取方案中,SDD上的集成晶体管以源极跟随器配置工作。信号电荷通过检测器的自停机制不断去除。该方法在计数速率高达10 kcps时给出了非常好的结果。对于更高的计数率,FWHM随着复位电流的增加而增加,并且观察到能量峰值的轻微移动。相对较大的信号上升时间也可能是限制在很高计数率下运行的限制。可选地,SDD可以在电荷敏感放大器(CSA)配置中运行。检测器信号电荷通过集成的FET作为输入晶体管,集成在反相放大器两端的反馈电容器上。信号上升时间不依赖于集成晶体管,并且可以做得非常短(例如50ns)。在需要非常高的计数速率和恒定的能量分辨率的应用中,SDD的脉冲复位操作是理想的。通过将短复位脉冲施加到集成在检测器阳极上的复位结构,可以消除信号电荷。 CSA读取方案和脉冲复位方法的结合使操作能够以最佳能量分辨率进行,而与计数率无关。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号