首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Measurement of electron spin-lattice relaxation times in radical doped butanol samples at 1 K using the NEDOR method
【24h】

Measurement of electron spin-lattice relaxation times in radical doped butanol samples at 1 K using the NEDOR method

机译:使用NEDOR方法测量自由基掺杂的丁醇样品在1 K下的电子自旋晶格弛豫时间

获取原文
获取原文并翻译 | 示例

摘要

The electron spin-lattice relaxation time (T_(1e)) of TEMPO- and trityl-doped butanol samples at 2.5 T and temperatures between 0.95 K and 2.17 K was studied by pulsed nuclear magnetic resonance (NMR) using the nuclear-electron double resonance (NEDOR) method. This method is based on the idea to measure the NMR lineshift produced by the local field of paramagnetic impurities, whose polarization can be manipulated. This is of technical advantage as measurements can be performed under conditions typically used for the dynamic nuclear polarization (DNP) process - in our case 2.5 T and temperatures around 1 K- where a direct measurement on the electronic spins would be far more complicated to perform. As T_(1e) is a crucial parameter determining the overall efficiency of DNP, the effect of the radical type, its spin concentration, the temperature and the oxygen content on T_(1e) has been investigated. For radical concentrations as used in DNP (several 10~(19) spins/cm~3) the relaxation rate (T_(1e)~(-1)) has shown a linear dependence on the paramagnetic electron concentration for both radicals investigated. Experiments with perdeuterated and ordinary butanol have given no indication for any influence of the host materials isotopes. The measured temperature dependence has shown an exponential characteristic. It is further observed that the oxygen content in the butanol samples has a considerable effect on the electron relaxation time and thus influences the nuclear relaxation time and polarization rate during the DNP. The experiments also show a variation in the NMR linewidth, leading to comparable time constants as determined by the lineshift. NEDOR measurements were also performed on irradiated, crystal grains of ~6LiD. These samples exhibited a linewidth behavior similar to that of the cylindrically shaped butanol samples.
机译:通过脉冲核磁共振(NMR),使用核电子双共振研究了TEMPO和三苯甲基掺杂的丁醇样品在2.5 T和0.95 K至2.17 K之间的温度下的电子自旋晶格弛豫时间(T_(1e)) (NEDOR)方法。该方法基于测量由顺磁杂质的局部磁场产生的NMR线位移的想法,顺磁杂质的极化可以控制。这具有技术优势,因为可以在通常用于动态核极化(DNP)工艺的条件下进行测量-在我们的情况下为2.5 T,温度约为1 K-在电子自旋上直接进行测量将非常复杂。由于T_(1e)是决定DNP整体效率的关键参数,因此研究了自由基类型,其自旋浓度,温度和氧含量对T_(1e)的影响。对于DNP中使用的自由基浓度(几个10〜(19)自旋/ cm〜3),弛豫率(T_(1e)〜(-1))对所研究的两个自由基均显示出对顺磁电子浓度的线性依赖性。用氘化和普通丁醇进行的实验并未表明主体材料同位素的任何影响。测得的温度依赖性显示出指数特性。进一步观察到,丁醇样品中的氧含量对电子弛豫时间有很大影响,因此会影响DNP期间的核弛豫时间和极化速率。实验还显示了NMR线宽的变化,从而导致了可观的时间常数(由线位移确定)。 NEDOR测量也对〜6LiD的辐照晶粒进行。这些样品表现出与圆柱形丁醇样品相似的线宽行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号