首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams
【24h】

Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

机译:使用实验室多色X射线束对能量分辨光子计数像素检测器进行能量校准

获取原文
获取原文并翻译 | 示例

摘要

Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128 × 128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~ 5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to conventional approaches using radioisotopes, a synchrotron, or specialized x-ray sources (e.g., characteristic or fluorescent x-rays) by reducing concerns over the beam flux, the irradiation field of view, accessibility, and cost.
机译:近来,已经考虑到能够解析入射的X射线光子能量的光子计数检测器用于光谱X射线成像应用中。为了可靠地使用能量分辨光子计数检测器(ERPCD),在使用能量校准之前,能量校准是必不可少的程序,因为即使入射光相同,ERCD的每个像素对入射光子的响应变化也是不可避免的。可以使用多种方法执行能量校准。在所有这些方法中,均记录了具有明确定义的峰值能量的光子光谱。每个像素应自行校准。在这项研究中,我们建议使用常规的多色X射线源(通常在实验室中使用)进行能量校准。能量校准程序主要包括确定光谱中的峰值能量,泛光场辐照,确定峰值通道以及确定校准曲线(即线性多项式的斜率和截距)。我们将校准算法应用于间距为0.35毫米,间距为0.35毫米的128×128像素的CdTe ERPCD,以减少脉冲堆积效应,并获得由于光束硬化而形成的窄形光谱。对于来自radio放射性同位素的59.6 keV光子,从16384个像素获得的校准曲线的平均相对误差约为0.56%。与未进行能量校准的结果相比,由于图像均一性的提高,这种逐像素能量校准将图像中的信噪比和对比度噪声比分别提高了约5和3倍。这项研究的第二个发现是,使用用于计算X射线光谱的通用算法获得的X射线光子光谱合理地描述了被测光谱中的峰,这意味着无需使用单独的光谱仪直接测量光谱就可以更容易地进行峰检测。通过减少对光束通量,辐射视场,可及性和可疑性的关注,所提出的方法将成为使用放射性同位素,同步加速器或专用X射线源(例如特征X射线或荧光X射线)的常规方法的有用替代方法。成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号