...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >All-optical control of electron self-injection in millimeter-scale, tapered dense plasmas
【24h】

All-optical control of electron self-injection in millimeter-scale, tapered dense plasmas

机译:毫米级锥形致密等离子体中电子自注入的全光控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

It is demonstrated that a laser pulse with an ultrahigh bandwidth (Δλ~ 400 nm) is an asset for future high-repetition-rate, quasimonoenergetic (QME), GeV-scale laser plasma electron accelerators. Manipulating the phase of the driver has a direct impact on evolution of the accelerating bucket (a cavity of electron density maintained by the pressure of the laser pulse radiation), making it possible to control electron self-injection and the final parameters of the QME beam by purely optical means. The large bandwidth makes it possible to compensate for the frequency red-shift accumulated at the pulse leading edge in transit through the plasma. Advancing higher frequencies in time (viz. introducing a negative frequency chirp of the incident pulse) reduces the red-shift, preventing self-compression of the pulse into a relativistic optical shock. This avoids constant expansion of the plasma bucket, suppressing continuous self-injection of copious unwanted electrons, keeping the beam almost free of a high-charge, poorly collimated low-energy tail. In addition, gradually increasing the plasma density in the forward direction locks electrons in the accelerating phase, delaying their dephasing and boosting their energy without increasing the tail. Advantages of this technique are demonstrated here for acceleration in sub-millimeter-length, dense plasmas (n_0 > 10~(19) cm~(-3)), using 100-mJ-scale energy laser pulses. Three-dimensional particle-in-cell simulations show that a negatively chirped, 15 TW pulse with a 20 fs length and a bandwidth corresponding to a transform-limited duration below two optical cycles, in combination with a modest density taper (corresponding to 25% linear increase of the density in the forward direction), transfers 3.5% of its energy to a 300 MeV electron bunch with relative energy spread below 4% and flux a factor 4.5 higher than the average flux in the tail. The acceleration occurs over a 0.6 mm plasma with the electron density at the center of the target n_0 = 1.3 × 10~(19) cm~(-3). Chirp and taper increase the QME bunch energy by 50% and brightness more than twice, while reducing the average flux in the tail by more than a half. This optically controlled, miniature 100-MeV-scale accelerator naturally affords high-repetition-rate operation important for radiation physics applications.
机译:结果表明,具有超高带宽(Δλ〜400 nm)的激光脉冲是未来高重复率,准单能(QME),GeV级激光等离子电子加速器的资产。操纵驱动器的相位直接影响加速铲斗的演化(通过激光脉冲辐射的压力保持电子密度的腔),从而可以控制电子的自我注入和QME束的最终参数通过纯粹的光学手段。大带宽可以补偿在通过等离子体传输的脉冲前沿积累的频率红移。及时提高较高的频率(即引入入射脉冲的负频率chi)可减少红移,从而防止脉冲自压缩成相对论性光震。这避免了等离子体桶的持续膨胀,抑制了多余的电子的连续自注入,使射束几乎没有高电荷,不准直的低能尾巴。另外,逐渐增加正向方向的等离子体密度会将电子锁定在加速阶段,从而延迟了它们的移相并提高了能量,而没有增加尾巴。此处展示了此技术的优势,它可以使用100 mJ大小的能量激光脉冲加速亚毫米长的密集等离子体(n_0> 10〜(19)cm〜(-3))。三维粒子模拟显示,负chi声的15 TW脉冲的长度为20 fs,带宽对应于两个光学周期以下的变换限制持续时间,并具有适度的密度锥度(对应于25%密度沿正方向线性增加),将其能量的3.5%转移到300 MeV电子束中,相对能量散布在4%以下,通量比尾部的平均通量高4.5倍。加速发生在0.6 mm等离子体上,电子密度位于目标n_0 = 1.3×10〜(19)cm〜(-3)的中心。 rp和锥度使QME束能量增加50%,亮度增加两倍以上,同时使尾部的平均通量减少一半以上。这种光控微型100 MeV比例加速器自然可以提供对辐射物理学应用非常重要的高重复频率操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号