首页> 外文期刊>Nuclear instruments and methods in physics research >Handling missing data for the identification of charged particles in a multilayer detector: A comparison between different imputation methods
【24h】

Handling missing data for the identification of charged particles in a multilayer detector: A comparison between different imputation methods

机译:处理缺少的数据以识别多层检测器中的带电粒子:不同插补方法之间的比较

获取原文
获取原文并翻译 | 示例

摘要

Identification of charged particles in a multilayer detector by the energy loss technique may also be achieved by the use of a neural network. The performance of the network becomes worse when a large fraction of information is missing, for instance due to detector inefficiencies. Algorithms which provide a way to impute missing information have been developed over the past years. Among the various approaches, we focused on normal mixtures' models in comparison with standard mean imputation and multiple imputation methods. Further, to account for the intrinsic asymmetry of the energy loss data, we considered skew-normal mixture models and provided a closed form implementation in the Expectation-Maximization (EM) algorithm framework to handle missing patterns. The method has been applied to a test case where the energy losses of pions, kaons and protons in a six-layers' Silicon detector are considered as input neurons to a neural network. Results are given in terms of reconstruction efficiency and purity of the various species in different momentum bins.
机译:通过能量损失技术在多层检测器中识别带电粒子也可以通过使用神经网络来实现。当大量信息丢失时,例如由于检测器效率低下,网络的性能会变差。在过去的几年中,已经开发出了提供填补缺失信息的方法的算法。在各种方法中,与标准均值插补和多重插补方法相比,我们着重于正常混合物的模型。此外,为了解决能量损失数据的固有不对称性,我们考虑了偏态-正态混合模型,并在期望最大化(EM)算法框架中提供了一种封闭形式的实现,以处理缺失的模式。该方法已应用于一个测试案例,该案例将六层硅探测器中的离子,钾和质子的能量损失视为神经网络的输入神经元。根据不同动量仓中不同物种的重建效率和纯度给出了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号