【24h】

Support vector machine based fault detection approach for RFT-30 cyclotron

机译:基于支持向量机的RFT-30回旋加速器故障检测方法

获取原文
获取原文并翻译 | 示例

摘要

An RFT-30 is a 30 MeV cyclotron used for radioisotope applications and radiopharmaceutical researches. The RFT-30 cyclotron is highly complex and includes many signals for control and monitoring of the system. It is quite difficult to detect and monitor the system failure in real time. Moreover, continuous monitoring of the system is hard and time-consuming work for human operators. In this paper, we propose a support vector machine (SVM) based fault detection approach for the RFT-30 cyclotron. The proposed approach performs SVM learning with training samples to construct the classification model. To compensate the system complexity due to the large-scale accelerator, we utilize the principal component analysis (PCA) for transformation of the original data. After training procedure, the proposed approach detects the system faults in real time. We analyzed the performance of the proposed approach utilizing the experimental data of the RFT-30 cyclotron. The performance results show that the proposed SVM approach can provide an efficient way to control the cyclotron system.
机译:RFT-30是一款30 MeV的回旋加速器,用于放射性同位素应用和放射性药物研究。 RFT-30回旋加速器非常复杂,并包含许多用于控制和监视系统的信号。实时检测和监视系统故障非常困难。此外,对于操作人员而言,连续监视系统是一项艰巨而费时的工作。在本文中,我们为RFT-30回旋加速器提出了一种基于支持向量机(SVM)的故障检测方法。所提出的方法利用训练样本执行SVM学习,以构建分类模型。为了补偿由于大型加速器引起的系统复杂性,我们利用主成分分析(PCA)转换原始数据。经过培训程序,该方法可以实时检测系统故障。我们利用RFT-30回旋加速器的实验数据分析了所提出方法的性能。性能结果表明,所提出的支持向量机方法可以提供一种有效的方法来控制回旋加速器系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号