首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Mass uncertainty in neutron multiplicity counting associated with the uncertainty on the fission multiplicity factorial moments
【24h】

Mass uncertainty in neutron multiplicity counting associated with the uncertainty on the fission multiplicity factorial moments

机译:中子多重计数中的质量不确定性与裂变多重因式矩的不确定性相关

获取原文
获取原文并翻译 | 示例

摘要

Passive neutron multiplicity counting relies on measurement of the spontaneous fission neutron yield, to estimate the amount of240Puin the tested sample. To account for additional neutron sources in the sample, typically(α,n)reactions and induced fissions in the odd fissionable isotopes, the first three sampled moments of the neutron count distribution are used in an inversion formula that quantifies the amplitude of all three neutron sources. When solving the set of equations corresponding to the inversion formula, the first three factorial moments of the fission multiplicity distribution (both the spontaneous and induced fission) are used. Thus, any uncertainty on the nuclear data and the numeric values of the neutron multiplicity moments, is bound to create a parametric uncertainty on the estimated mass. So far, most studies on the uncertainty associated with the nuclear data are experimental by nature, often focusing on a better estimation of the factorial moments and a viable uncertainty estimation on the reported values.Since the inversion formula is non-linear, the error propagation from the multiplicity moments to the mass is also non-linear, and might have a very strong dependence on the sample parameters. In the present study, we formulate mathematical formulas that describe the error propagation from the factorial moments of the fission multiplicity to the mass, and implement the formulas to quantify the uncertainty in terms of the sample characteristics. For validation, the computational results are then compared with experimental results.
机译:被动中子多重性计数依赖于对自发裂变中子产率的测量,以估计测试样品中240 Pu的量。为了考虑样品中的其他中子源,通常是奇数可裂变同位素中的(α,n)反应和诱发裂变,在反演公式中使用中子计数分布的前三个采样矩来量化所有三个中子的振幅资料来源。在求解与反演公式对应的方程组时,使用裂变多重性分布的前三个阶乘矩(自发裂变和诱导裂变)。因此,核数据和中子多重矩数值的任何不确定性必然会在估计质量上产生参数不确定性。迄今为止,大多数关于核数据相关不确定性的研究都是本质上是实验性的,通常侧重于对阶乘矩的更好估计以及对报告值的可行不确定性估计。由于反演公式是非线性的,因此误差传播从重数矩到质量,也是非线性的,可能对样品参数有很强的依赖性。在本研究中,我们制定了描述从裂变多重性阶乘矩到质量的误差传播的数学公式,并实现了这些公式以量化样本特征方面的不确定性。为了进行验证,然后将计算结果与实验结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号