首页> 外文期刊>Nuclear Engineering and Design >The FEM based calculation of crack-tip strain rate for determining the crack growth rate of 304 stainless steel in BWR environments
【24h】

The FEM based calculation of crack-tip strain rate for determining the crack growth rate of 304 stainless steel in BWR environments

机译:基于FEM的裂纹尖端应变率计算,以确定BWR环境中304不锈钢的裂纹扩展速率

获取原文
获取原文并翻译 | 示例
       

摘要

This research calculates the crack growth rate (CGR) of the cooling pipe in the nuclear power plant. The crack is caused by the tension left in welding as well as by the coolant chemicals. There is, by far, no satisfactory deterministic model that can predict the crack growth rate. Although Macdonald's CEFM model is more close to a deterministic one, it requires accurate calculation of the crack-tip strain rate before the crack growth rate can be obtained by using Faraday's equation. The empirical equation used by the CEFM model for estimating the crack-tip strain rate is a drawback in making it a totally deterministic model. This research is set to make up this critical defect by applying non-linear finite element method to calculate the crack-tip strain rate. According to the metallic property, there is a plastic zone forming around the crack-tip. This research found when applying finite element method. the number of the elements (namely the mesh density) in the vicinity of the crack-tip has significant effects on the crack-tip strain obtained. Therefore, this research pioneered by using different mesh density in the vicinity of the crack-tip for the calculation of the crack-tip strain, the convergence of which is used for selecting the appropriate mesh density. The selected mesh density is then used to determine the dimension of the plastic zone, in which the crack-tip strain rate can be calculated. When the FEM results are compared with the experimental data, the nonlinear finite element method combined with CEFM shows a very satisfactory prediction capability.
机译:该研究计算了核电站冷却管的裂纹扩展率(CGR)。裂纹是由焊接中残留的张力以及冷却剂化学物质引起的。到目前为止,还没有令人满意的确定性模型可以预测裂纹扩展速率。尽管麦克唐纳德的CEFM模型更接近于确定性模型,但在使用Faraday方程获得裂纹扩展速率之前,它需要精确计算裂纹尖端应变速率。 CEFM模型用于估计裂纹尖端应变率的经验方程式在使其成为完全确定性的模型方面存在缺陷。本研究旨在通过应用非线性有限元方法计算裂纹尖端应变率来弥补这一关键缺陷。根据金属特性,裂纹尖端周围会形成一个塑性区。本研究发现采用有限元方法时。裂纹尖端附近的元素数量(即网格密度)对获得的裂纹尖端应变有重大影响。因此,这项研究开创了在裂纹尖端附近使用不同的网格密度来计算裂纹尖端应变的方法,其收敛性用于选择合适的网格密度。然后,将选定的网格密度用于确定塑性区的尺寸,在其中可以计算出裂纹尖端的应变率。当将有限元结果与实验数据进行比较时,非线性有限元方法与CEFM相结合具有很好的预测能力。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2001年第3期|p.227-240|共14页
  • 作者

    Pai-Chuan Lu;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

  • 入库时间 2022-08-18 00:50:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号