首页> 外文期刊>New Generation Computing >Bisociative Literature-Based Discovery: Lessons Learned and New Word Embedding Approach
【24h】

Bisociative Literature-Based Discovery: Lessons Learned and New Word Embedding Approach

机译:基于Bisociative的文学的发现:经验教训和新的单词嵌入方法

获取原文
获取原文并翻译 | 示例

摘要

The field of bisociative literature-based discovery aims at mining scientific literature to reveal yet uncovered connections between different fields of specialization. This paper outlines several outlier-based literature mining approaches to bridging term detection and the lessons learned from selected biomedical literature-based discovery applications. The paper addresses also new prospects in bisociative literature-based discovery, proposing an advanced embeddings-based technology for cross-domain literature mining.
机译:基于双郊文学的发现领域旨在挖掘科学文献,揭示不同专业领域之间的尚未发现的联系。本文概述了弥合术语检测的几种基于异常值的文献挖掘方法以及从基于选定的基于生物医学的文学的发现应用中吸取的经验教训。本文还提出了基于双委员会文学的发现的新前景,提出了一种高级嵌入式基于跨域文献挖掘的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号