首页> 外文期刊>Neurocomputing >Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection
【24h】

Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection

机译:正常图:基于空间时间图卷积网络的骨架基于视频异常检测的预测网络

获取原文
获取原文并翻译 | 示例

摘要

This paper focus on analyzing graph connection of human joints for skeleton based video anomaly detection, which is more effective and efficient than those image-level reconstruction based or prediction based methods that may be affected by complex background. Specifically, we propose a spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection. In other words, we build a normal graph describing graph connection of joints in normal data, where joints of abnormal events will be outliers of this graph. To our knowledge, this is the first work to apply graph convolutional networks on skeleton-based video anomaly detection. Experiments show that our proposed normal graph achieves the-state-of-art performance, compared to those image-level reconstruction-based or prediction-based methods, as well as RNN based methods upon joints.(c) 2020 Published by Elsevier B.V.
机译:本文侧重于分析人类关节的曲线曲线图,用于基于骨架的视频异常检测,这比基于或基于预测的方法更有效和有效,这些方法可能受到复杂背景的影响。 具体而言,我们提出了一种基于骨架的视频异常检测的基于空间时间图卷积网络的预测网络。 换句话说,我们构建了一个正常的图表,描述了正常数据中关节的图形连接,其中异常事件的关节将是此图的异常值。 为了我们的知识,这是第一个在基于骨架的视频异常检测上应用图形卷积网络的工作。 实验表明,与基于图像级重建的基于或预测的方法相比,我们所提出的正常图表实现了最先进的性能,以及基于基于预测的方法,以及关节的RNN方法。(c)由Elsevier B.V发布2020

著录项

  • 来源
    《Neurocomputing》 |2021年第15期|332-337|共6页
  • 作者单位

    ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China|Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Shanghai Peoples R China|Univ Chinese Acad Sci Beijing Peoples R China;

    ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China|Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Shanghai Peoples R China|Univ Chinese Acad Sci Beijing Peoples R China;

    ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graph convolutional networks; Anomaly detection; Skeleton;

    机译:图表卷积网络;异常检测;骨架;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号