首页> 外文期刊>Neurocomputing >Domain adaptation of object detector using scissor-like networks
【24h】

Domain adaptation of object detector using scissor-like networks

机译:使用剪刀类似的网络对象检测器的域改编

获取原文
获取原文并翻译 | 示例

摘要

When the training data and the test data do not obey the same distribution, the performances of many object detection methods always decrease greatly. Naturally, domain adaptation methods at feature level are proposed. The basic idea is to adapt the feature extraction network such that the feature distributions of the source and target domains match. We propose a new method that is built directly on the Faster R CNN model, which not only aligns the source and target data features, but also forces their generated features closer together to further align the source and target domains. Moreover, compared with previous approaches, we construct a more powerful discriminator and a simple generator to solve the domain adaptation problem. The model works like a pair of scissors, so we call it Scissors Networks (SN). We conduct extensive experiments on popular datasets, including Cityscapes, Foggy Cityscapes, SIM10k and KITTI. The experimental results demonstrate that our algorithm is superior to the state-of-the-art deep learning based domain adaptation approaches.(c) 2021 Elsevier B.V. All rights reserved.
机译:当训练数据和测试数据不服从相同的分布时,许多物体检测方法的性能总是大大减小。当然,提出了特征级别的域适应方法。基本思想是调整特征提取网络,使得源和目标域的特征分布匹配。我们提出了一种新的方法,即直接在更快的R CNN模型上构建,这不仅对调整源和目标数据特征,而且还强制他们所生成的功能更靠近,以进一步对齐源域和目标域。此外,与先前的方法相比,我们构建了一个更强大的鉴别器和简单的发电机来解决域适应问题。该模型类似于一对剪刀,所以我们称之为剪刀网络(SN)。我们对流行的数据集进行了广泛的实验,包括城市景观,有雾的城市景观,SIM10K和Kitti。实验结果表明,我们的算法优于基于最先进的基于深度学习的域适应方法。(c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第17期|263-271|共9页
  • 作者单位

    Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China;

    Southwest Univ Polit Sci & Law Civil & Commercial Law Sch Chongqing 401120 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object detection; Domain adaptation; Feature distribution; Transfer learning;

    机译:对象检测;域适应;特征分布;转移学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号