首页> 外文期刊>Neurocomputing >Single image super-resolution with attention-based densely connected module
【24h】

Single image super-resolution with attention-based densely connected module

机译:单幅图像超分辨率,基于注意力的密集连接模块

获取原文
获取原文并翻译 | 示例

摘要

Benefited from the abundant features provided by the dense connection block, the densely connected based super-resolution network has achieved superior performance in the single image super-resolution (SISR) task. However, the abundant features also introduce redundant and conflicting information, resulting in longer training time and unsatisfied image reconstruction results. To solve this problem, we propose an attention-based densely connected module (DAM). DAM consists of two parts: channel attention module (CAM) and dense connection block (DB). CAM is placed at the front of each DB and gives different weights of each channel from received features for suppressing redundant responses. Based on DAM, we propose an Attention-based Densely Connected Network (ADSRNet) for SISR, and explore the effectiveness of DAM on other densely connected-based super-resolution networks. Extensive experiments are performed on commonly-used super-resolution benchmarks. Qualitative and quantitative results demonstrate the effectiveness of our method.(c) 2020 Elsevier B.V. All rights reserved.
机译:受益于密集连接块提供的丰富功能,基于密集的基于连接的超分辨率网络在单个图像超分辨率(SISR)任务中取得了卓越的性能。然而,丰富的功能也引入了冗余和相互冲突的信息,从而延长培训时间和不满意的图像重建结果。为了解决这个问题,我们提出了一种基于关注的密集连接模块(DAM)。大坝由两部分组成:通道注意模块(CAM)和密集连接块(DB)。凸轮放置在每个DB的前部,并从接收的特征提供每个通道的不同权重,以抑制冗余响应。基于大坝,我们提出了一种基于关注的密集连接网络(ADSRNET),用于SISR,并探讨大坝对其他密集连接的超分辨率网络的有效性。在普通使用的超分辨率基准测试中进行了广泛的实验。定性和定量结果证明了我们方法的有效性。(c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第17期|876-884|共9页
  • 作者单位

    Beijing Inst Technol Sch Comp Sci Beijing Lab Intelligent Informat Technol Beijing Peoples R China|China Cent Televis Beijing Peoples R China;

    Beijing Inst Technol Sch Comp Sci Beijing Lab Intelligent Informat Technol Beijing Peoples R China;

    Beijing Inst Technol Sch Comp Sci Beijing Lab Intelligent Informat Technol Beijing Peoples R China;

    Beijing Inst Technol Sch Comp Sci Beijing Lab Intelligent Informat Technol Beijing Peoples R China;

    Beijing Inst Technol Sch Comp Sci Beijing Lab Intelligent Informat Technol Beijing Peoples R China;

    Beijing Inst Technol Sch Comp Sci Beijing Lab Intelligent Informat Technol Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Super-resolution; Neural attention; Dense connection; Deep neural network;

    机译:超级分辨率;神经关注;密集连接;深神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号