...
首页> 外文期刊>Neurocomputing >M-GWNN: Multi-granularity graph wavelet neural networks for semi-supervised node classification
【24h】

M-GWNN: Multi-granularity graph wavelet neural networks for semi-supervised node classification

机译:M-GWNN:半监督节点分类的多粒度图小波神经网络

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Graph convolutional neural networks (GCNs) based on spectral-domain have achieved impressive performance for semi-supervised node classification task. Recently, graph wavelet neural network (GWNN) has made a significant improvement for this task. However, GWNN is usually shallow based on a one-or two hop neighborhood structure, making it unable to obtain sufficient global information to make it better. But, if GWNN merely stacks too many convolutional layers, it produces the phenomenon of the wavelet convolutional filters over-smoothing. To stack this challenge, we propose Multi-granularity Graph Wavelet Neural Networks (M-GWNN), a novel spectral GCNs architecture that leverages the proposed Louvain-variant algorithm and the jump connection to improve the ability of node representations for semi-supervised node classification. We first repeatedly apply the proposed Louvain-variant algorithm to aggregate nodes into supernodes to build a hierarchy of successively coarser graph, further refine the coarsened graph symmetrically back to the original by utilizing the jump connection. Moreover, during this process, multiple layers of GWNN are applied to propagate information across entire networks. The proposed M-GWNN efficiently captures node features and graph topological structures of varying granularity to obtain global information. Furthermore, M-GWNN effectively employs the jump connection to connect receptive fields of varying granularity to alleviate the speed of over-smoothing. Experiments on four benchmark datasets demonstrate the effectiveness of the proposed M-GWNN. Particularly, when only a few labeled nodes are provided on the NELL dataset, M-GWNN achieves up to an average 5.7% performance improvement compared with state-of-the-art methods.(c) 2020 Elsevier B.V. All rights reserved.
机译:基于频谱域的图表卷积神经网络(GCNS)已经为半监督节点分类任务实现了令人印象深刻的性能。最近,图小波神经网络(GWNN)对此任务进行了重大改进。然而,GWNN通常基于一个或两个跳邻域结构,使其无法获得足够的全球信息来使其更好。但是,如果GWNN仅仅堆叠太多卷积层,它会产生小波卷积过滤器过度平滑的现象。为了堆叠这一挑战,我们提出了多粒度图小波神经网络(M-GWNN),一种新颖的光谱GCNS架构,它利用所提出的Louvain-Variant算法和跳转连接来提高半监督节点分类节点表示的能力。我们首先重复将建议的Louvain - 变体算法应用于聚集节点进入超级节点以构建连续粗糙图的层次结构,通过利用跳转连接,进一步优化较粗糙的图谱返回到原件。此外,在该过程中,应用多个GWNN层来在整个网络上传播信息。所提出的M-GWNN有效地捕获不同粒度的节点特征和图形拓扑结构,以获得全局信息。此外,M-GWNN有效地采用跳跃连接来连接不同粒度的接收领域,以减轻过平滑的速度。四个基准数据集的实验证明了所提出的M-GWNN的有效性。特别是,当Nell DataSet上仅提供少数标记的节点时,与最先进的方法相比,M-GWNN达到平均5.7%的性能改进。(c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号