首页> 外文期刊>Expert systems with applications >Learning ladder neural networks for semi-supervised node classification in social network
【24h】

Learning ladder neural networks for semi-supervised node classification in social network

机译:学习社交网络半监督节点分类的梯形神经网络

获取原文
获取原文并翻译 | 示例

摘要

Graph convolutional networks (GCNs) and network embedding are the two main categories of popular methods for Semi-Supervised Node Classification (SSNC) in social network. However, the former is commonly oriented to attributed networks with efficient auxiliary information in nodes. The latter is usually not geared towards specific graph mining tasks. Therefore, these methods often perform poorly for specific tasks in non-attributed networks. To solve the above problems, in this paper, we propose a novel semi-supervised Node Classification method with Ladder Neural Networks named NCLNN for non-attributed network. We first preprocess the graph for capturing the structural information. Then we present and learn a deep ladder neural network for SSNC. Our trained ladder neural networks could combine supervised learning with unsupervised learning in deep neural networks via simultaneously minimizing the sum of supervised and unsupervised loss functions. Extensive experiments on three real-world network datasets demonstrate that the proposed NCLNN substantially outperforms the state-of-the-art methods on SSNC task.
机译:图表卷积网络(GCN)和网络嵌入是社交网络中半监督节点分类(SSNC)的热门方法的两个主要类别。然而,前者通常以节点中的有效辅助信息归因于归因于归属网络。后者通常不会朝向特定的图形挖掘任务。因此,这些方法通常在非归属网络中的特定任务中执行差。为了解决上述问题,在本文中,我们提出了一种新的半监督节点分类方法,具有名为NCLNN的梯形神经网络,用于非归因网络。我们首先预处理捕获结构信息的图表。然后我们出示并学习SSNC的深层梯形神经网络。我们训练有素的梯形图神经网络可以通过同时最小化监督和无监督损失功能的总和,将监督学习与无监督学习相结合。在三个真实网络数据集上的广泛实验表明,所提出的NCLNN基本上表现出对SSNC任务的最先进方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号