首页> 外文期刊>Neurocomputing >Adaptive segmentation model for liver CT images based on neural network and level set method
【24h】

Adaptive segmentation model for liver CT images based on neural network and level set method

机译:基于神经网络的肝CT图像自适应分割模型及级别方法

获取原文
获取原文并翻译 | 示例

摘要

Accurate segmentation is difficult for liver computed tomography (CT) images, since the liver CT images do not always have obvious and smooth boundaries. The location of the tumor is not specified and the image intensity is similar to that of the liver. Although manual and automatic segmentation methods, traditional and deep learning models currently exist, none can be specifically and effectively applied to segment liver CT images. In this paper, we propose a new model based on a level set framework for liver CT images in which the energy functional contains three terms including the data fitting term, the length term and the bound term. Then we apply the split Bregman method to minimize the energy functional that leads the energy functional to converge faster. The proposed model is robust to initial contours and can segment liver CT images with intensity inhomogeneity and unclear boundaries. In the bound term, we use the U-Net to get constraint information which has a considerable influence on effective and accurate segmentation. We improve a multi-phase level set of our model to get contours of tumor and liver at the same time. Finally, a parallel algorithm is proposed to improve segmentation efficiency. Results and comparisons of experiments are shown to demonstrate the merits of the proposed model including robustness, accuracy, efficiency and intelligence.(c) 2021 Elsevier B.V. All rights reserved.
机译:肝脏计算机断层扫描(CT)图像难以精确分割,因为肝CT图像并不总是具有明显和平稳的边界。未指定肿瘤的位置,并且图像强度与肝脏的图像强度类似。虽然目前存在手动和自动分割方法,但传统和深度学习模型,但没有专门且有效地应用于肝脏CT图像。在本文中,我们提出了一种基于肝脏CT图像的水平集框架的新模型,其中能量功能包含三个术语,包括数据拟合项,长度术语和绑定术语。然后,我们应用拆分BREGMAN方法以最小化导致能量功能的能量功能更快地收敛。所提出的模型对初始轮廓具有鲁棒,并且可以具有强度不均匀性和不明确的边界的肝CT图像。在绑定期限中,我们使用U-Net来获得对有效和准确的分割具有相当大的影响的约束信息。我们改善了我们模型的多相级别集,以同时获得肿瘤和肝脏的轮廓。最后,提出了一种并行算法来提高分割效率。实验的结果和比较显示了拟议模型的优点,包括鲁棒性,准确性,效率和智力。(c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号