首页> 外文期刊>Neurocomputing >RGB-D salient object detection via cross-modal joint feature extraction and low-bound fusion loss
【24h】

RGB-D salient object detection via cross-modal joint feature extraction and low-bound fusion loss

机译:RGB-D突出的物体通过跨模型接头特征提取和低束缚融合损失检测

获取原文
获取原文并翻译 | 示例

摘要

RGB-D salient object detection aims at identifying attractive objects in a scene by combining the color image and depth map. However, due to the differences between RGB-D image pairs, it is a key issue to utilize cross-modal data effectively. In this paper, we propose a novel RGB-D salient object detection method via cross-modal joint feature extraction and low-bound fusion loss. A two-stream framework is designed to generate the saliency maps for the RGB image and depth map. During the feature extraction, a cross-modal joint feature extraction module (CFM) is proposed to capture valuable joint features from the two streams. The CFM explores complementary information from the feature extraction and feeds the joint features to the aggregation stage of the network. Then, the fusion block (FB) is utilized to aggregate the multi-scale features of each stream and the joint features to generate the updated features. In addition, a low-bound fusion loss is designed to constrain the predictions of the two streams, to improve the lower bound of saliency values and generate a distinct saliency map. Experimental results on five datasets demonstrate that the proposed method achieves superior performances.(c) 2020 Elsevier B.V. All rights reserved.
机译:RGB-d显着对象检测的目标在由彩色图像和深度图相结合识别场景中的有吸引力的目标。然而,由于RGB-d的图像对之间的差异,它是有效地利用交叉模态数据的一个关键问题。在本文中,我们提出通过跨通道联合特征提取和低结合的融合损失的新颖RGB-d显着对象的检测方法。的两流框架被设计为产生用于RGB图像和深度图的显着性映射。在特征提取中,跨通道联合特征提取模块(CFM),提出了从两个流捕获有价值关节功能。该CFM探索从特征提取补充信息并供给关节功能到所述网络的聚合阶段。然后,将融合块(FB)被利用来聚集各个流的多尺度特征和关节功能,以生成更新的功能。此外,低结合的融合损失被设计来限制这两个流的预测,来提高下界显着性值的和产生截然不同的显着图。在五个数据集实验结果表明,该方法实现了卓越的性能。(C)2020爱思唯尔B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第17期|623-635|共13页
  • 作者单位

    Tianjin Univ Sch Elect & Informat Engn Tianjin 300300 Peoples R China;

    Tianjin Univ Sch Elect & Informat Engn Tianjin 300300 Peoples R China;

    Incept Inst Artificial Intelligence Abu Dhabi U Arab Emirates;

    Tianjin Univ Sch Elect & Informat Engn Tianjin 300300 Peoples R China;

    Tianjin Univ Sch Elect & Informat Engn Tianjin 300300 Peoples R China;

    Tianjin Univ Sch Elect & Informat Engn Tianjin 300300 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    RGB-D images; Salient object detection; Cross-modal joint features; Saliency fusion;

    机译:RGB-D图像;突出物体检测;跨模型关节功能;显着融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号