首页> 外文期刊>Neurocomputing >Applications of information channels to physics-informed neural networks for WiFi signal propagation simulation at the edge of the industrial internet of things
【24h】

Applications of information channels to physics-informed neural networks for WiFi signal propagation simulation at the edge of the industrial internet of things

机译:信息频道在工业互联网边缘的WiFi信号传播模拟中对物理信息通知神经网络的应用

获取原文
获取原文并翻译 | 示例

摘要

The ubiquitous presence of data driven technologies that move information from the edge of the Industrial Internet of Things (IIoT) to the cloud for advanced computation and back to the edge for action are pushing wireless connections to the limit. Under these conditions optimizing WIFI Received Signal Strength Intensity (RSSI) can improve data management, computational workflows, and geolocation accuracy while reducing energy consumption in order to minimize charging and computational resource requirements at the edge. Ensuring connectivity for these mission critical processes will require detailed knowledge (either measured or simulated) of the state of the electromagnetic fields in advanced manufacturing scenarios. Simulation has the advantage of developing more scalable solutions to this characterization problem but comes at a very high computational cost that may not be possible on edge devices with limited computational resources. In order to reduce the time and resource cost of achieving real time simulations with low computing specification edge devices, we propose creating a novel method that exploits the notion of information channels to create efficient Convolutional Neural Networks (CNNs) capable of determining the RSSI given a completely new geometry (never used in training) where objects or obstacles (walls, machines, tables, etc.) and their respective location, size and reflectivity indices, along with the antenna location are completely random. (c) 2021 Elsevier B.V. All rights reserved.
机译:普遍存在的数据驱动技术,将信息从工业互联网(IIT)的边缘移动到云以进行高级计算,并回到Action的边缘正在推动无线连接到极限。在这些条件下,优化WiFi接收的信号强度强度(RSSI)可以改善数据管理,计算工作流程和地理定位精度,同时降低能量消耗,以便最小化边缘处的计费和计算资源要求。确保这些任务关键过程的连接将需要高级制造场景中电磁场状态的详细知识(测量或模拟)。模拟具有为该表征问题开发更可扩展的解决方案的优点,但是以具有有限的计算资源的边缘设备可能无法实现的非常高的计算成本。为了降低使用低计算规范边缘设备实现实时模拟的时间和资源成本,我们建议创建一种新颖的方法,该方法利用信息频道的概念来创建能够确定RSSI的高效卷积神经网络(CNNS)完全新的几何形状(从未用于训练),其中物体或障碍物(墙壁,机器,表格等)及其各自的位置,大小和反射率指数以及天线位置是完全随机的。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号