首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
【24h】

Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

机译:保护法的保守物理知识神经网络,用于保护法律:申请转发和逆问题

获取原文
获取原文并翻译 | 示例

摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg-de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier-Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node. Published by Elsevier B.V.
机译:我们向非线性保护法的离散域提出了一个保守的物理知识的神经网络(CPInn)。这里,术语离散域表示在计算计算域之后获得的离散子域,其中沿着子域接口以强形式的强制连续性来实现PINN的PINN和CPInn的节约特性。在双曲线保护法的情况下,对流助焊剂有助于界面,而在粘性保护法的情况下,对流和扩散势率均有贡献。除了磁通连续性条件外,平均解决方案(由两个不同的神经网络给出)也在两个子域之间的公共接口处强制执行。人们还可以在域中采用深度神经网络,其中解决方案可能具有复杂的结构,而浅神经网络可以用于具有相对简单和平滑的解决方案的子域。所提出的方法的另一个优点是额外的自由度,它在选择优化算法和各种训练参数等剩余点,激活函数,宽度和网络深度等各种训练参数方面提供的。CPInn涉及优化的各种形式的误差简要讨论,泛化和近似误差及其来源。在CPInn中,使用本地自适应激活功能,因此与其固定的对应物相比培训模型更快。使用所提出的方法解决了前进和逆问题。从汉堡,korteeg-de Vries(KDV)方程等标量非线性保护法等各种测试用例,如可压缩欧拉方程都解决了保护规律。通过不可压缩的Navier-Stokes方程管理的盖子驱动腔测试案例也得到解决,并将结果与​​基准解决方案进行比较。该方法享有各个子域中的单独神经网络的域分解的特性,它有效地将其自身归因于并行化计算,其中每个子域可以被分配给不同的计算节点。由elsevier b.v出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号