首页> 外文期刊>Neurocomputing >Sequence feature generation with temporal unrolling network for zero-shot action recognition
【24h】

Sequence feature generation with temporal unrolling network for zero-shot action recognition

机译:具有零射击动作识别的时间展开网络的序列功能生成

获取原文
获取原文并翻译 | 示例

摘要

Zero-Shot Action Recognition (ZSAR) aims to recognize unseen action classes not included in the training dataset. Existing generative methods for ZSAR synthesize a feature of unseen action from a class embedding to overcome the absence of training data. Specifically, previous methods synthesize a feature which is averaged along a time axis, even though a video is extracted as a sequence of feature vectors. They suffer from the ambiguity of temporal information, which leads to confusion among actions sharing similar subactions. To tackle the problem, we first propose to synthesize not an averaged feature but a sequence consisting of feature vectors along the time axis. Hence, we design Sequence Feature Generative Adversarial Network (SFGAN) with Temporal Unrolling NEtwork (TUNE), which unrolls a class embedding into a set of condition vectors for generating sequences of features. Also, we employ a sequence discriminator as the second teacher. Through extensive experiments on the three benchmarks, HMDB51, UCF101, and Olympic, we validate the efficacy of sequence generation for ZSAR, and our method achieves the state-of-the-art generalized zero-shot learning performances.(c) 2021 Elsevier B.V. All rights reserved.
机译:零拍摄动作识别(ZSAR)旨在识别不包括在训练数据集中的看不见的动作类。 ZSAR的现有生成方法综合了从嵌入类别的看不见行动的特征,以克服没有培训数据。具体地,即使将视频被提取为特征向量序列,也可以综合沿时间轴平均的特征。他们遭受了时间信息的模糊性,这导致共享类似押出的行动之间的混淆。为了解决问题,我们首先建议合成平均特征,而是沿着时间轴组成的特征向量。因此,我们设计了具有时间展开网络(调谐)的序列特征生成的对冲网络(SFGAN),其将嵌入到用于生成特征序列的一组条件向量的类。此外,我们使用序列鉴别者作为第二任教师。通过对三个基准测试,HMDB51,UCF101和奥运会的广泛实验,我们验证了ZSAR序列生成的功效,我们的方法实现了最先进的广义零射击学习表演。(c)2021 Elsevier BV版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号