首页> 外文期刊>Neurocomputing >MultiFace: A generic training mechanism for boosting face recognition performance
【24h】

MultiFace: A generic training mechanism for boosting face recognition performance

机译:多因素:促进面部识别性能的通用培训机制

获取原文
获取原文并翻译 | 示例

摘要

Deep Convolutional Neural Networks (DCNNs) and their variants have been widely used in large scale face recognition(FR) recently. Existing methods have achieved good performance on many FR benchmarks. However, most of them suffer from two major problems. First, these methods converge quite slowly since they optimize the loss functions in a high-dimensional and sparse Gaussian Sphere. Second, the high dimensionality of features, despite the powerful descriptive ability, brings difficulty to the optimization, which may lead to a sub-optimal local optimum. To address these problems, we propose a simple yet efficient training mechanism called MultiFace, where we approximate the original high-dimensional features by the ensemble of low-dimensional features. The proposed mechanism is also generic and can be easily applied to many advanced FR models. Moreover, it brings the benefits of good interpretability to FR models via the clustering effect. In detail, the ensemble of these low-dimensional features can capture complementary yet discriminative information, which can increase the intra-class compactness and inter-class separability. Experimental results show that the proposed mechanism can accelerate 2 & ndash;3 times with the softmax loss and 1.2 & ndash;1.5 times with Arcface or Cosface, while achieving state-of-the-art performances in several benchmark datasets. Especially, the significant improvements on large-scale datasets(e.g., IJB and MageFace) demonstrate the flexibility of our new training mechanism.(c) 2021 Elsevier B.V. All rights reserved.
机译:深度卷积神经网络(DCNNS)及其变体最近被大规模面部识别(FR)广泛使用。现有方法在许多FR基准上取得了良好的表现。然而,大多数人都遭受了两个主要问题。首先,这些方法在优化高维和稀疏高斯球体中优化损耗函数,因此这些方法会聚得非常缓慢。其次,尽管具有强大的描述性能力,但特征的高度,使得优化难以导致局部最优的局部最佳。为了解决这些问题,我们提出了一种称为Multiface的简单且有效的培训机制,在那里我们通过低维特征的集合近似原始的高维特征。所提出的机制也是通用的,可以很容易地应用于许多高级FR模型。此外,它通过聚类效应带来了对FR模型的良好解释性的好处。详细地,这些低维特征的集合可以捕获互补且辨别的信息,这可以提高类内紧凑性和阶级间可分离性。实验结果表明,该提出的机制可以加速2–软墨损失3次,1.2– artc面或cosface 1.5次,同时在几个基准数据集中实现最先进的性能。特别是,大规模数据集的显着改进(例如,IJB和MAGEFACE)展示了我们的新培训机制的灵活性。(c)2021 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第11期|40-47|共8页
  • 作者单位

    Harbin Inst Technol Sch Sci & Technol Shenzhen Peoples R China;

    Cloud & Smart Ind Grp Tencent Peoples R China;

    Harbin Inst Technol Sch Sci & Technol Shenzhen Peoples R China;

    Harbin Inst Technol Sch Sci & Technol Shenzhen Peoples R China|Peng Cheng Lab Ctr Artificial Intelligence Shenzhen Peoples R China;

    Cloud & Smart Ind Grp Tencent Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Face recognition; Arcface; Cosface; Metric learning;

    机译:面部识别;arcface;cosface;度量学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号