首页> 外文期刊>Neurocomputing >From context-aware to knowledge-aware: Boosting OOV tokens recognition in slot tagging with background knowledge
【24h】

From context-aware to knowledge-aware: Boosting OOV tokens recognition in slot tagging with background knowledge

机译:从上下文中获取知识感知:在包含背景知识的插槽标记中提升OOV令牌识别

获取原文
获取原文并翻译 | 示例

摘要

Neural-based context-aware models for slot tagging tasks in language understanding have achieved state-of-the-art performance, especially deep contextualized models, such as ELMo, BERT. However, the presence of out-of-vocab (OOV) words significantly degrades the performance of neural-based models, especially in a few-shot scenario. In this paper, we propose a novel knowledge-aware slot tagging model to integrate contextual representation of input text and the large-scale lexical background knowledge. Besides, we use multi-level graph attention to explicitly reason via lexical relations. We aim to leverage both linguistic regularities covered by deep language models (LM) and high-quality background knowledge derived from curated knowledge bases (KB). Consequently, our model could infer rare and unseen words in the test dataset by incorporating contextual semantics learned from the training dataset and lexical relations from ontology. The experiments show that our proposed knowledge integration mechanism achieves consistent improvements across settings with different sizes of training data on two public benchmark datasets. We also show through detailed analysis that incorporating background knowledge effectively alleviates issues of data scarcity.(c) 2021 Elsevier B.V. All rights reserved.
机译:用于语言理解中的插槽标记任务的神经基础的上下文感知模型已经实现了最先进的性能,尤其是深层语境化模型,例如Elmo,Bert。然而,出现超出词汇(OOV)词语的情况显着降低了神经基模型的性能,尤其是在几次场景中。在本文中,我们提出了一种新颖的知识感知的插槽标记模型,用于集成输入文本的上下文表示和大规模词汇背景知识。此外,我们使用多级图注意通过词汇关系明确原因。我们的目标是利用深语模型(LM)和策划知识库(KB)的高质量背景知识所涵盖的语言规律。因此,我们的模型可以通过结合从训练数据集和来自本体的词法关系中学到的上下文语义来推断出测试数据集中的稀有和看不见的单词。实验表明,我们所提出的知识集成机制在两个公共基准数据集上具有不同大小的培训数据的设置一致的改进。我们还通过详细分析显示,结合背景知识有效减轻数据稀缺问题。(c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号