首页> 外文期刊>Neurocomputing >Self-adjusting k nearest neighbors for continual learning from multi-label drifting data streams
【24h】

Self-adjusting k nearest neighbors for continual learning from multi-label drifting data streams

机译:从多标签漂移数据流不断学习的自我调整k最近邻居

获取原文
获取原文并翻译 | 示例

摘要

Drifting data streams and multi-label data are both challenging problems. Multi-label instances may simultaneously be associated with many labels and classifiers must predict the complete set of labels. Learning from data streams requires algorithms able to learn from potentially unbounded data that is constantly changing. When multi-label data arrives as a stream, the challenges of both problems must be addressed, but additional challenges unique to the combined problem also arise. Each label may experience different concept drifts, simultaneously or distinctly, and parameter optimizations may be different for each label. In this paper we present a self-adapting algorithm for drifting, multi-label data streams, that can adapt to a variety of concepts drifts, is robust to data-level difficulties, and mitigates the necessity to tune multiple parameters. The window of retained instances self-adjusts in size to retain only the current concept, enabling efficient response to abrupt concept drift. The value k is self-adapting for each label, relieving the necessity to tune and allowing it to change, over time, for each label individually. A novel, label-based mechanism disables individual labels that contribute to error, while another punitive measure removes erroneous instances entirely, increasing robustness to noise, concept drift and label differences. Extensive experiments on 35 multi-label streams and generators demonstrate the superiority and advantages of the self-adapting mechanisms proposed compared to existing stateof-the-art methods. ? 2021 Elsevier B.V. All rights reserved.
机译:漂移数据流和多标签数据都是具有挑战性的问题。多标签实例可以同时与许多标签和分类器相关联,必须预测完整的标签集。从数据流中学习需要能够从不断变化的潜在无界数据中学习的算法。当多标签数据到达流时,必须解决这两个问题的挑战,但也会出现额外的挑战。每个标签可以同时或明确地遇到不同的概念漂移,并且每个标签可以不同地不同。在本文中,我们提出了一种用于漂移的自我适应算法,可以适应各种概念漂移的多标签数据流,对数据级难点具有鲁棒,并减轻了调整多个参数的必要性。保留实例的窗口尺寸自调节以仅保留当前概念,从而实现对突然概念漂移的有效响应。值k为每个标签进行自适应,缩短了调整的必要性并允许它随着时间的单独为每个标签进行更改。一种新颖的基于标签的机制禁用有助于错误的单个标签,而另一个惩罚性措施完全消除了错误的实例,从而增加了噪声,概念漂移和标签差异的鲁棒性。在35个多标签流和发电机上进行了广泛的实验,证明了与现有的州 - 最现实的方法相比提出的自适应机制的优越性和优点。还是2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号