机译:LSI-LSTM:通过考虑轨迹点的位置语义和位置重要性来实时驾驶目的地预测的注意力感知LSTM
Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China|Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China|Collaborat Innovat Ctr Geospatial Technol Wuhan Peoples R China;
Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China;
Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China;
Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China;
Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China|Lawrence Berkeley Natl Lab Berkeley CA USA;
Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China|Collaborat Innovat Ctr Geospatial Technol Wuhan Peoples R China;
Wuhan Univ Global Nav Satellite Syst Res Ctr Wuhan Peoples R China;
Wuhan Univ Global Nav Satellite Syst Res Ctr Wuhan Peoples R China;
Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China;
Individual mobility; Driving destination prediction; Location semantics extraction; Urban functionality; Residual network; Driving status;
机译:步行轨迹预测的位置速度颞下关注LSTM模型
机译:挖掘轨迹中的地理-时间-语义模式以进行位置预测
机译:用于预测未来位置的语义轨迹上的语义增强多维马尔可夫链?
机译:视线驱动的语义相似度分析可增强未来的位置预测
机译:投票用脚
机译:用于预测未来位置的语义轨迹上的语义增强多维马尔可夫链
机译:Seabig:一种基于深入的学习方法,用于行人语义轨迹的位置预测