首页> 外文期刊>Neurocomputing >LSI-LSTM: An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points
【24h】

LSI-LSTM: An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points

机译:LSI-LSTM:通过考虑轨迹点的位置语义和位置重要性来实时驾驶目的地预测的注意力感知LSTM

获取原文
获取原文并翻译 | 示例

摘要

Individual driving final destination prediction supports location-based services such as personalized service recommendations, traffic navigation, and public transport dispatching. However, real-time destination prediction is challenging due to the complexity of temporal dependencies, and the strong influence of travel spatiotemporal semantics and spatial correlations. Besides temporal context, the nearby urban functionalities of traveling zones and departure regions, and the crucial positions on the road network where trajectory points located would reflect the travel intentions of drivers. However, these spatial factors are rarely considered in existing studies. To fill this gap, we propose a real-time individual driving destination prediction model LSI-LSTM based on an attention-aware Long Short-Term Memory (LSTM) by taking Location Semantics and Location Importance of trajectory points into account. More specifically, a trajectory location semantics extraction method (t-LSE) enriches feature description with prior knowledge for implicit travel intentions learning. t-LSE represents urban functionality through Points of Interest (POIs) using Term Frequency-Inverse Document Frequency (TF-IDF). Meanwhile, a novel trajectory spatial attention mechanism (t-SAM) captures the trajectory points that strongly correlate to candidate destinations based on the location importance inferred from the driving status, i.e., turning angle, driving speed, and traveled distance. Comparative experiments with three baseline methods, i.e., Hidden Markov Model, Random Forest, and LSTM, demonstrate significant prediction accuracy improvements of LSI-LSTM on four individual trajectory datasets. Further analyses validate the effectiveness of the proposed semantic extraction method and attention mechanism, and also discuss the factors that may affect the prediction results.(c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
机译:个人驾驶最终目的地预测支持基于位置的服务,例如个性化服务推荐,流量导航和公共交通调度。然而,由于时间依赖性的复杂性,以及旅行时滞的语义和空间相关性的强烈影响,实时目的地预测是挑战。除了时间背景下,旅行区和出发地区的附近城市功能以及路线上的关键位置,旨在反映司机的旅行意图。然而,在现有研究中很少考虑这些空间因素。为了填补这种差距,我们通过考虑轨迹点的位置语义和位置重要性,基于注意力感知的长短短期存储器(LSTM)提出了一个实时单独的驾驶目的地预测模型LSI-LSTM。更具体地说,轨迹位置语义提取方法(T-LSE)丰富了特征描述,以先前的隐含旅行意图学习的知识。 T-LSE通过使用术语频率 - 逆文档频率(TF-IDF)来代表兴趣点(POI)的城市功能。同时,一种新的轨迹空间注意机制(T-SAM)捕获与候选目的地强烈关联的轨迹点,基于从驾驶状态,即转角,驱动速度和行驶距离推断的位置重要性。具有三种基线方法的比较实验,即隐藏的马尔可夫模型,随机林和LSTM,在四个单独的轨迹数据集上展示了LSI-LSTM的显着预测准确性改进。进一步分析验证了所提出的语义提取方法和注意机制的有效性,并讨论可能影响预测结果的因素。(c)2021提交人。由elsevier b.v发布。这是CC By-NC-ND许可下的开放式访问文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。

著录项

  • 来源
    《Neurocomputing》 |2021年第14期|72-88|共17页
  • 作者单位

    Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China|Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China|Collaborat Innovat Ctr Geospatial Technol Wuhan Peoples R China;

    Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China;

    Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China;

    Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China;

    Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China|Lawrence Berkeley Natl Lab Berkeley CA USA;

    Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China|Collaborat Innovat Ctr Geospatial Technol Wuhan Peoples R China;

    Wuhan Univ Global Nav Satellite Syst Res Ctr Wuhan Peoples R China;

    Wuhan Univ Global Nav Satellite Syst Res Ctr Wuhan Peoples R China;

    Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Individual mobility; Driving destination prediction; Location semantics extraction; Urban functionality; Residual network; Driving status;

    机译:个人移动;驾驶目的地预测;位置语义提取;城市功能;剩余网络;驾驶状态;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号