首页> 外文期刊>Neurocomputing >A neural architecture search method based on gradient descent for remaining useful life estimation
【24h】

A neural architecture search method based on gradient descent for remaining useful life estimation

机译:基于梯度下降的神经结构搜索方法剩余寿命估计

获取原文
获取原文并翻译 | 示例

摘要

Remaining useful life is the estimated continuous normal working time of a component or system from the current moment to the potential failure. The traditional methods have high trial-and-error costs and poor migration capabilities. Fortunately, the neural architecture search (NAS) that has emerged partially solves the problem of automatic construction of network models. However, the search strategy for NAS is reinforcement learning or evolutionary algorithms, which essentially search in discrete space and treating the objective function as a black box, which is very time-consuming. To solve this problem, we proposed a gradient-based neural architecture search method. This method regards a cell in the search space as a directed acyclic graph (DAG) containing N ordered nodes. Each node is a latent representation, and the directed edges represent the conversion operation of two nodes. By mixing the candidate operations (ReLU, tanh) with the softmax function, the search space becomes a continuous space and the objective function becomes a differentiable function, so gradient-based optimization methods can be used to find the optimal structure. A neural architecture search method based on gradient descent for RUL estimation, with extensive experiments showing apparently, outperforms traditional approaches as well as Long Short-Term Memory (LSTM), and it takes much less computing resources than the reinforcement neural architecture search method.(c) 2021 Elsevier B.V. All rights reserved.
机译:剩余的使用寿命是从当前时刻到潜在故障的组件或系统的估计连续正常工作时间。传统方法具有高试验和错误成本和迁移能力不佳。幸运的是,已经出现的神经结构搜索(NAS)部分解决了网络模型的自动构建问题。然而,对于NAS的搜索策略是强化学习或进化算法,基本上在离散空间搜索和处理的目标函数作为一个黑盒子,这是非常耗时的。为了解决这个问题,我们提出了一种基于梯度的神经结构搜索方法。该方法将搜索空间中的小区视为包含N个有序节点的定向非循环图(DAG)。每个节点是潜在的表示,并且定向边缘表示两个节点的转换操作。通过将候选操作(Relu,TanH)与SoftMax函数混合,搜索空间变为连续空间,目标函数变为可差化的功能,因此可以使用基于梯度的优化方法来找到最佳结构。基于对RUL估计梯度下降,具有广泛的实验显示明显的神经结构的搜索方法,效果优于传统方法以及长短期记忆(LSTM),这需要少得多的计算资源比增强神经结构的搜索方法。( c)2021 Elsevier BV保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第28期|184-194|共11页
  • 作者单位

    Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Remaining useful life; Neural architecture search; Gradient descent; Automation;

    机译:剩下的使用寿命;神经结构搜索;梯度下降;自动化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号