首页> 外文期刊>Neurocomputing >SemiText: Scene text detection with semi-supervised learning
【24h】

SemiText: Scene text detection with semi-supervised learning

机译:SEMITEXT:现场文本检测与半监督学习

获取原文
获取原文并翻译 | 示例

摘要

Scene text detection is an important step of scene text recognition and has achieved significant progress. However, the requirement of large amounts of annotated training data, which is used for training text detection model, has become a great challenge for existing methods. In this paper, we propose a semi -supervised scene text detection framework (SemiText), which trains robust and accurate scene text detectors using a pre-trained supervised model and the unannotated data. With a pre-trained model that is pre-trained on the fully annotated synthetic dataset, i.e., SynthText, we investigate the inductive and transductive semi-supervised learning on the unannotated dataset respectively. For inductive learning, the pre-trained model is applied to the unannotated training dataset to search for more training exam-ples, which are further combined with SynthText to fine-tune the pre-trained model and achieve a supe-rior detection model. For transductive learning, the unannotated training dataset is replaced with the unannotated test dataset. Meanwhile, for the aim of real-world applications, we adopt Mask R-CNN to detect text with arbitrary shapes and exploit context information to suppress false positives. Extensive experiments on different datasets show that the performance of our text detection method can be clearly improved under both inductive and transductive semi-supervision. Additionally, we also achieve state-of-the-art performance under full supervision. (C) 2020 Elsevier B.V. All rights reserved.
机译:场景文本检测是场景文本识别的重要步骤,并取得了重大进展。但是,用于培训文本检测模型的大量注释训练数据的要求已成为现有方法的巨大挑战。在本文中,我们提出了一个半过化的场景文本检测框架(SEMITEXT),它使用预先训练的监督模型和未解释的数据列举了鲁棒和准确的场景文本检测器。使用预先培训的模型,在完全注释的合成数据集上进行预先培训,即Synthtext,我们分别调查了在未经发布的数据集上的归纳和转换半监督学习。对于归纳学习,预先训练的模型应用于未经训练的训练数据集以搜索更多的培训考试,这与SynthText进一步结合到微调预先训练的模型并实现Supe-Rior检测模型。对于转换学习,未替换的训练数据集已替换为未解式的测试数据集。同时,对于真实应用的目的,我们采用面具R-CNN检测具有任意形状的文本,并利用上下文信息来抑制误报。在不同数据集上的广泛实验表明,在电感和转导半监督下,可以清楚地改善文本检测方法的性能。此外,我们还在完全监督下实现最先进的表现。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第24期|343-353|共11页
  • 作者单位

    Wuhan Univ Sch Printing & Packaging Wuhan Peoples R China|Wuhan Univ Inst Artificial Intelligence Wuhan Peoples R China|Wuhan Univ Suzhou Inst Suzhou Peoples R China;

    Wuhan Univ Sch Printing & Packaging Wuhan Peoples R China|Wuhan Univ Inst Artificial Intelligence Wuhan Peoples R China;

    Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China;

    South China Normal Univ Sch Software Guangzhou Peoples R China;

    Wuhan Univ Inst Artificial Intelligence Wuhan Peoples R China|Wuhan Univ Sch Comp Sci Wuhan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Scene text detection; Semi-supervised learning; Mask R-CNN; Context information;

    机译:场景文本检测;半监督学习;面具R-CNN;上下文信息;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号