首页> 外文期刊>Neurocomputing >Rank order coding based spiking convolutional neural network architecture with energy-efficient membrane voltage updates
【24h】

Rank order coding based spiking convolutional neural network architecture with energy-efficient membrane voltage updates

机译:基于排名编码的尖峰卷积神经网络架构,具有节能膜电压更新

获取原文
获取原文并翻译 | 示例

摘要

Spiking neural network (SNN) system that uses rank order coding (ROC) as input spike encoding, gener-ally suffers from low recognition accuracy and unnecessary computations that increase complexities. In this paper, we present a Spiking convolutional neural network (Spiking CNN) architecture that signifi-cantly improves recognition accuracy as well as computation efficiencies based on a novel ROC and mod-ified kernel sizes. The proposed ROC generates spike trains based on maximum input value without sorting operations. In addition, as the recognition accuracy is affected by the reduced number of spikes as layers become deeper, the proposed ROC is inserted just before the final layer to increase the number of input spikes. The 2 x 2 pooling kernels are also replaced with 4 x 4 to reduce the network size. The hardware architecture of the proposed Spiking CNN has been implemented using 65 nm CMOS process. Neuron-centric membrane voltage update approach is also efficiently exploited in convolutional and fully connected layers to improve the hardware energy efficiencies. The Spiking CNN processor is seamlessly processing 2.85 K classifications per second with 6.79 uJ/classification. It also achieves 90.2% of recogni-tion accuracy for MNIST dataset using unsupervised learning with STDP. (C) 2020 Elsevier B.V. All rights reserved.
机译:使用量级订单编码(ROC)作为输入尖峰编码的尖峰神经网络(SNN)系统,Gener-ally遭受了增加复杂性的低识别精度和不必要的计算。在本文中,我们展示了一个尖峰卷积神经网络(尖峰CNN)架构,其显着提高了基于新的Roc和Mod-ified内核大小的识别准确性以及计算效率。建议的ROC基于最大输入值生成尖峰列车而不进行排序操作。此外,由于识别准确性受到尖峰数量的影响,因为层变得更深,所提出的ROC在最终层之前插入以增加输入尖峰的数量。 2 x 2池孔也被4 x 4替换为减少网络尺寸。建议的尖峰CNN的硬件架构已经使用65 nm CMOS工艺实现。中心膜电压更新方法也有效地利用在卷积和完全连接的层中,以提高硬件能量效率。尖峰CNN处理器无缝处理每秒2.85 k分类,具有6.79 UJ /分类。使用无监督学习与STDP,它还实现了MNIST DataSet的90.2%的识别准确性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号