首页> 外文期刊>Neurocomputing >SA-NLI: A Supervised Attention based framework for Natural Language Inference
【24h】

SA-NLI: A Supervised Attention based framework for Natural Language Inference

机译:SA-NLI:基于监督的自然语言推断框架

获取原文
获取原文并翻译 | 示例

摘要

Natural Language Inference (NLI) aims to determine the relationship of a pair of sentences. As a critical component of NLI models, attention mechanism has been proven to be effective in the representation and interaction of sentences. However, the attention methods adopted in the existing NLI models are nonparametric or trained inside the model without explicit supervision, and the attention results are poorly explained. In this paper, we propose a Supervised Attention based Natural Language Inference (SA-NLI) framework to solve this problem. In our framework, the intra attention module is trained to focus on syntactically related tokens, while the inter attention module is constrained to capture alignment between sentences. Moreover, the supervised training of intra attention module and inter attention module are unified with the training of the NLI model by multi-task learning and transfer learning, respectively. We conduct extensive experiments on multiple NLI datasets, and the results demonstrate the effectiveness of our supervised attention based method. Further visual analysis validates the interpretability of attention results, and the extended experimental results indicate the generalization of our SA-NLI framework. (c) 2020 Published by Elsevier B.V.
机译:自然语言推论(NLI)旨在确定一对句子的关系。作为NLI模型的关键组成部分,已被证明在句子的代表和相互作用方面被证明是有效的。然而,现有的NLI模型中采用的注意方法是非参数或在模型内部培训而没有明确的监督,引起效果很差。在本文中,我们提出了一种受监督的基于自然语言推理(SA-NLI)框架来解决这个问题。在我们的框架中,关注模块训练以专注于句法相关的令牌,而关注模块被约束以捕获句子之间的对齐。此外,通过多任务学习和转移学习的NLI模型培训,统一注意力模块和关注模块的监督培训。我们对多个NLI数据集进行了广泛的实验,结果表明了我们受监管注意的方法的有效性。进一步的视觉分析验证了注意力结果的可解释性,并且扩展的实验结果表明我们的SA-NLI框架的概括。 (c)2020由elsevier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2020年第24期|72-82|共11页
  • 作者单位

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Natural language inference; Supervised attention; Syntactic information; Alignment;

    机译:自然语言推断;监督;句法信息;对齐;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号