首页> 外文期刊>Neurocomputing >Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation
【24h】

Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation

机译:基于多源信号的电动液压执行器故障诊断:实验研究

获取原文
获取原文并翻译 | 示例

摘要

As a comparatively complicated and compact system with fast response, accurate control precision and high load-bearing capacity, electrohydraulic actuator (EHA) is generally composed of electronic control, hydraulic power, and mechanical drive systems, and has been widely used in aircrafts, mining machines, and transportation vehicles. Although a lot of redundancy designs are used in EHA to improve its operational reliability, failures are still inevitable due to long-term operation and harsh working environments. This paper conducts an experimental investigation on EHA fault diagnosis based on numerical simulation tests and real experimental tests. Multiple source domain signals are sampled from three types of sensors with multiple channels in the EHA's test platforms under variable control commands, thereby showing high redundancy of information. Another challenge is that the fault data sampled from an experimental test platform are more complex than that of the simulated data obtained from the AMESim simulation test platform. These characteristics may cause a huge challenge for traditional fault diagnosis methods. Recent development on deep learning has accelerated many classification tasks because of its end-to-end adaptive learning ability, while the application of deep learning in fault diagnosis of EHAs remains relatively rare. Therefore, a deep convolutional neural network (CNN) is proposed for EHA fault diagnosis, and comparison with several popular data-driven methods are conducted using two datasets sampled from the AMESim simulation test platform and experimental test platform. Among these classifiers, the proposed convolutional neural network is more robust, especially when handling complicated real experimental test data. (C) 2020 Elsevier B.V. All rights reserved.
机译:作为具有快速响应,精确控制精度和高承载能力的比较复杂和紧凑的系统,电液执行器(EHA)通常由电子控制,液压动力和机械驱动系统组成,并且已广泛用于飞机,采矿机器和运输车辆。虽然在EHA中使用了许多冗余设计以提高其操作可靠性,但由于长期运行和恶劣的工作环境,故障仍然是不可避免的。本文对基于数值模拟试验和真实实验测试的EHA故障诊断进行了实验研究。从可变控制命令的EHA在EHA的测试平台中采用多个源域信号,在具有EHA的测试平台中的多个通道,从而显示了高冗余信息。另一个挑战是,从实验测试平台采样的故障数据比从AMESIM仿真测试平台获得的模拟数据更复杂。这些特性可能对传统故障诊断方法产生巨大挑战。最近的深度学习的发展加速了许多分类任务,因为其端到端的自适应学习能力,而深入学习在EHAS的故障诊断中的应用仍然相对较少。因此,提出了一种深度卷积神经网络(CNN),用于EHA故障诊断,并使用从AMESIM仿真测试平台和实验测试平台采样的两个数据集进行了与几种流行的数据驱动方法的比较。在这些分类器中,拟议的卷积神经网络更加强大,特别是在处理复杂的真实实验测试数据时。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第5期|224-238|共15页
  • 作者单位

    Sichuan Univ Sch Aeronaut & Astronaut Ctr Aerosp Informat Proc & Applicat Chengdu 610065 Sichuan Peoples R China;

    Sichuan Univ Sch Aeronaut & Astronaut Ctr Aerosp Informat Proc & Applicat Chengdu 610065 Sichuan Peoples R China;

    Aviat Key Lab Sci & Technol Fault Diag & Hlth Man Shanghai 201601 Peoples R China;

    City Univ Hong Kong Sch Data Sci Hong Kong Peoples R China;

    City Univ Hong Kong Sch Data Sci Hong Kong Peoples R China;

    Sichuan Univ Sch Aeronaut & Astronaut Ctr Aerosp Informat Proc & Applicat Chengdu 610065 Sichuan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrohydraulic actuator; Fault diagnosis; Deep learning; Information redundancy; Convolutional neural network;

    机译:电动液压执行器;故障诊断;深入学习;信息冗余;卷积神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号