首页> 外文期刊>Neurocomputing >Multi-label learning with label-specific features via weighting and label entropy guided clustering ensemble
【24h】

Multi-label learning with label-specific features via weighting and label entropy guided clustering ensemble

机译:多标签学习通过加权和标签熵引导群集集群合奏

获取原文
获取原文并翻译 | 示例

摘要

Multi-label learning has attracted more and more researchers' attention. It deals with the problem where each instance is associated with multiple labels simultaneously. Some methods improve the performance by constructing label-specific features. Specifically, the LIFTACE method constructs label-specific features by clustering ensemble techniques, which ignores the importance of label vectors and does not explore label correlations when constructing the classification model. In this paper, we propose a multi-label learning method called LF-LELC, which considers the importance of label vectors and constructs the clas-sification model by considering label correlations. Firstly, it performs clustering on the positive instances and negative instances respectively. The number of clusters is set by the information contained in the label vectors. After that, it employs clustering ensemble techniques that consider label correlations to make the clustering results more stable and effective. Then, it constructs label-specific features for each label. Finally, it builds the classification model by exploring label correlations. The label set for each test example is predicted by the classification model. Experiments show that LF-LELC can achieve better performance by considering the importance of label vectors and the correlations among labels. (c) 2020 Elsevier B.V. All rights reserved.
机译:多标签学习吸引了越来越多的研究人员的注意。它涉及每个实例同时与多个标签关联的问题。一些方法通过构建特定标签特征来提高性能。具体而言,提升方法通过聚类整体技术构造特定标签特征,这忽略了标签向量的重要性,并且在构建分类模型时不会探索标签相关性。在本文中,我们提出了一种称为LF-LELC的多标签学习方法,其考虑标签相关性来构建标签向量的重要性并通过考虑标签相关性来构建CLAS-yification模型。首先,它分别在正实例和负实例上执行群集。群集数由标签向量中包含的信息设置。之后,它采用聚类集合技术,考虑标签相关性,使聚类结果更加稳定和有效。然后,它为每个标签构造特定标签特征。最后,它通过探索标签相关性来构建分类模型。通过分类模型预测每个测试示例的标签。实验表明,通过考虑标签载体的重要性和标签之间的相关性,LF-LELC可以实现更好的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第2期|59-69|共11页
  • 作者

    Zhang Chunyu; Li Zhanshan;

  • 作者单位

    Jilin Univ Coll Software Changchun 130012 Peoples R China|Jilin Univ Key Lab Symbol Computat & Knowledge Engn Changchun 130012 Peoples R China;

    Jilin Univ Coll Software Changchun 130012 Peoples R China|Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China|Jilin Univ Key Lab Symbol Computat & Knowledge Engn Changchun 130012 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-label learning; Label-specific features; Label entropy; Label correlation;

    机译:多标签学习;标签特定功能;标签熵;标记相关性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号