首页> 外文期刊>Neurocomputing >A multi-source heterogeneous data analytic method for future price fluctuation prediction
【24h】

A multi-source heterogeneous data analytic method for future price fluctuation prediction

机译:未来价格波动预测的多源异构数据分析方法

获取原文
获取原文并翻译 | 示例

摘要

Most previous works on future market price forecasting only utilize the historical transaction data, while ignoring many other valuable factors. Recently, many research works propose multiple-source data -based predicting approaches in the stock market. Although the futures market and the stock market are very similar, the futures market still has its uniqueness. Most importantly, the subject matter of futures is usually commodity entities with prominent competing products or upstream, downstream industries, which can significantly influence the price. Therefore, it is essential to propose a future specific analysis framework by considering different factors.In this study, we constructed a Multi-source Heterogeneous Data Analysis (MHDA) method for future price prediction by integrating multiple-source information, i.e., trading data, news event data, and investor comments. Firstly, we first constructed a relation map to capture all related news events from upstream and downstream commodities and then built a future-specific sentiment dictionary to accurately quantify the sentiment impact of related news and investor comments during the feature extraction. Finally, we model the quantified multi-source heterogeneous information by an extended Hidden Markov Model to capture the underlying temporal dependency in the data. Evaluations on the data of palm oil futures from 2016.9 to 2017.9 show the effectiveness of our proposed framework. (c) 2020 Elsevier B.V. All rights reserved.
机译:最先前的市场价格预测仅利用历史交易数据,同时忽略了许多其他有价值的因素。最近,许多研究作品提出了基于股票市场的多源数据预测方法。虽然期货市场和股市非常相似,但期货市场仍然具有独特性。最重要的是,期货主题通常是具有突出竞争产品的商品实体或上游行业,这可能会显着影响价格。因此,必须通过考虑不同的因素来提出未来的特定分析框架。在本研究中,我们通过集成多源信息,即交易数据来构建未来价格预测的多源异构数据分析(MHDA)方法,新闻活动数据和投​​资者评论。首先,我们首先构建了一个关系图,以捕获来自上游和下游商品的所有相关新闻事件,然后建立了未来特定的情绪字典,以准确地量化相关新闻和投资者评论的情绪影响。最后,我们通过扩展隐藏的马尔可夫模型来模拟量化的多源异构信息,以捕获数据的底层时间依赖性。 2016.9至2017年棕榈油期货数据的评价显示了我们提出框架的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号