首页> 外文期刊>Advanced engineering informatics >Multi-source data analytics for AM energy consumption prediction
【24h】

Multi-source data analytics for AM energy consumption prediction

机译:用于AM能耗预测的多源数据分析

获取原文
获取原文并翻译 | 示例

摘要

The issue of Additive Manufacturing (AM) system energy consumption attracts increasing attention when many AM systems are applied in digital manufacturing systems. Prediction and reduction of the AM energy consumption have been established as one of the most crucial research targets. However, the energy consumption is related to many attributes in different components of an AM system, which are represented as multiple source data. These multi-source data are difficult to integrate and to model for AM energy consumption due to its complexity. The purpose of this study is to establish an energy value predictive model through a data-driven approach. Owing to the fact that multi-source data of an AM system involves nested hierarchy, a hybrid approach is proposed to tackle the issue. This hybrid approach incorporates clustering techniques and deep learning to integrate the multi-source data that is collected using the Internet of Things (IoT), and then to build the energy consumption prediction model for AM systems. This study aims to optimise the AM system by exploiting energy consumption information. An experimental study using the energy consumption data of a real AM system shows the merits of the proposed approach. Results derived using this hybrid approach reveal that it outperforms pre-existing approaches.
机译:当许多增材制造系统应用在数字制造系统中时,增材制造(AM)系统能耗问题日益引起人们的关注。预测和降低AM能耗已被确定为最关键的研究目标之一。但是,能耗与AM系统不同组件中的许多属性有关,这些属性表示为多个源数据。这些多源数据由于其复杂性而难以集成和建模AM能耗。这项研究的目的是通过数据驱动的方法建立一个能源价值预测模型。由于AM系统的多源数据涉及嵌套层次结构,因此提出了一种混合方法来解决该问题。这种混合方法结合了群集技术和深度学习,以集成使用物联网(IoT)收集的多源数据,然后构建用于AM系统的能耗预测模型。这项研究旨在通过利用能耗信息来优化AM系统。使用实际增材制造系统的能耗数据进行的实验研究表明了该方法的优点。使用这种混合方法得出的结果表明,其性能优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号