首页> 外文期刊>Neurocomputing >Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data
【24h】

Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data

机译:基于Wasserstein距离的智能故障诊断的深势逆境转移,标记数据不足

获取原文
获取原文并翻译 | 示例

摘要

Intelligent fault diagnosis is one critical topic of maintenance solution for mechanical systems. Deep learning models, such as convolutional neural networks (CNNs), have been successfully applied to fault diagnosis tasks and achieved promising results. However, one is that two datasets (in source and target domains) of similar tasks are with different feature distributions because of different operational conditions; another one is that insufficient or unlabeled data in real industry applications (target domains) limit the adaptability of the source domain well-defined models. To solve the above problems, the concept of transfer learning should be adopted for domain adaptation, in the meantime, a network performs both supervised and unsupervised learning is required. Inspired by Wasserstein distance of optimal transport, in this paper, we propose a novel Wasserstein Distance-based Deep Transfer Learning (WD-DTL) network for both supervised and unsupervised fault diagnosis tasks. WD-DTL learns domain feature representations (generated by a CNN based feature extractor) and minimizes distributions between the source and target domains through an adversarial training process. The effectiveness of the proposed WD-DTL is verified through 16 different transfer tasks. Results show that WD-DTL achieves the highest diagnostic accuracies when compared to the existing Maximum Mean Discrepancy and CNN networks in almost all transfer tasks. (C) 2020 Elsevier B.V. All rights reserved.
机译:智能故障诊断是机械系统维护解决方案的一个关键主题。深入学习模型,如卷积神经网络(CNNS),已成功应用于故障诊断任务并取得了有希望的结果。但是,一个是由于不同的操作条件,类似任务的两个数据集(在源极和目标域中)具有不同的特征分布;另一个是,真实行业应用中的数据不足或未标记的数据(目标域)限制源域明确定义模型的适应性。为了解决上述问题,应采用转移学习的概念,以便域适应,同时,需要一个网络执行监督和无监督的学习。通过Wassersein距离的最佳运输距离,我们提出了一种新的Wasserstein距离的深度转移学习(WD-DTL)网络,用于监督和无监督的故障诊断任务。 WD-DTL学习域特征表示(由基于CNN的特征提取器生成),并通过对抗培训过程最大限度地减少源和目标域之间的分布。通过16种不同的转移任务验证了所提出的WD-DTL的有效性。结果表明,与几乎所有转移任务中的现有最大平均差异和CNN网络相比,WD-DTL达到最高诊断准确性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第7期|35-45|共11页
  • 作者单位

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat MOE Key Lab Intelligent Control & Image Proc Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat MOE Key Lab Intelligent Control & Image Proc Wuhan 430074 Peoples R China;

    State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Peoples R China|Huazhong Univ Sci & Technol Sch Mech Sci & Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat MOE Key Lab Intelligent Control & Image Proc Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat MOE Key Lab Intelligent Control & Image Proc Wuhan 430074 Peoples R China|State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Transfer learning; Domain adaptation; Wasserstein distance; Convolutional neural networks; Intelligent fault diagnosis;

    机译:转移学习;域适应;Wassersein距离;卷积神经网络;智能故障诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号