首页> 外文期刊>Neurocomputing >Accelerating deep reinforcement learning model for game strategy
【24h】

Accelerating deep reinforcement learning model for game strategy

机译:加速游戏策略的深增强学习模式

获取原文
获取原文并翻译 | 示例

摘要

In recent years, deep reinforcement learning has achieved impressing accuracies in games compared with traditional methods. Prior schemes utilized Convolutional Neural Networks (CNNs) or Long Short-Term Memory networks (LSTMs) to improve the performances of the agents. In this paper, we consider the issue from a different perspective when the training and inference of deep reinforcement learning are required to be performed with limited computing resources. Mainly, we propose two efficient neural network architectures of deep reinforcement learning: Light-Q-Network (LQN) and Binary-Q-Network (BQN). In LQN, The depth-wise separable CNNs are utilized in memory and computation saving. While, in BQN, the weights of convolutional layers are binary that help in shortening the training time and reduce memory consumption. We evaluate our approach on Atari 2600 domain and StarCraft II mini-games. The results demonstratethe efficiency of the proposed architectures. Though performances of agents in most games are still super-human, the proposed methods advance the agent from sub to super-human performance in particular games. Also, we empirically find that non-standard convolution and non-full-precision networks do not affect agent learning game strategy. (c) 2020 Elsevier B.V. All rights reserved.
机译:近年来,与传统方法相比,深入的加固学习在游戏中令人印象深刻的准确性。现有方案利用卷积神经网络(CNN)或长短期存储器网络(LSTMS)来改善代理的性能。在本文中,我们考虑当需要使用有限的计算资源来执行深度加强学习的培训和推理时,从不同的角度考虑问题。主要是,我们提出了两种高效的深度加强学习神经网络架构:Light-Q-Network(LQN)和二进制Q网络(BQN)。在LQN中,深度明智的可分离CNN用于存储器和计算节省。虽然在BQN中,卷积层的重量是二进制,有助于缩短训练时间并降低内存消耗。我们评估我们在Atari 2600领域和星际争霸II迷你游戏的方法。结果证明了拟议的架构的效率。虽然大多数游戏中的代理商的表现仍然是超级人类的,但提出的方法在特定游戏中推动了代理商从子到超级人类性能。此外,我们经验发现,非标准卷积和非全精密网络不影响代理学习游戏策略。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号